
Honours Individual Project Dissertation

STUDENT-PROJECT ALLOCATION IN THE
MATCHING ALGORITHM TOOLKIT

Frederik Glitzner
March 24, 2023

i

Abstract

Many real-world allocation scenarios such as job recruitment, project assignment, or kidney
exchanges can be modelled using classical matching problems. The Matching Algorithm Toolkit
is a web application making many state-of-the-art matching under preference algorithms available
for three different problem classes. However, there are three major shortcomings: there are bugs
and minor features that would greatly increase the usability and functionality of the system, there
are engineering challenges to be addressed, and the Student-Project Allocation (SPA) problem
class is missing completely although it is of great theoretical and practical relevance.

This project addresses all three key issues identified in the existing system. First, we fix bugs
and inconsistencies introduced by previous developers to ensure the integrity and reliability
of the system. Second, we design and implement a new input method that enables users to
input instances more efficiently. Third, we improve the appearance and usability of the random
instance generator forms and user manual, making them more intuitive and user-friendly. In
addition to these improvements, this project extends the Toolkit to include the SPA problem class.
For SPA, we make available five algorithms that find solutions with respect to different optimality
criteria such as stability and cost-optimality. Moreover, we implement other essential features
for SPA in the Toolkit such as instance readers, random instance generators, and a user-friendly
output. All changes are successfully deployed to the live server.

Functional testing and a user study confirm that the system is highly user-friendly and that the
changes are well-integrated with the system. Furthermore, the empirical evaluation conducted
on more than ten thousand random instances shows how the SPA algorithms vary with respect to
matching sizes, costs, and computation times, as the instance size, student preference list lengths,
and agent popularity parameters are varied.

i

Acknowledgements

I would like to thank Professor David Manlove for inspiring and motivating me to work on
matching problems, his continuous guidance and support, and the many hours we spent discussing
the Toolkit, SPA, and algorithmics.

I would also like to thank Dr William Pettersson for his ad hoc support with the Toolkit and
deployment which saved many hours that could be spend working on other parts of the project.

I would also like to thank all participants of my user study for their time, feedback, and suggestions
for improvement.

Finally, I am very thankful for the support and motivation of my family and friends throughout
this exciting but at times very stressful time.

ii

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: Frederik Glitzner Date: 24 March 2023

iii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement 1
1.3 Outline 1

2 Background 2
2.1 Matching Problems 2
2.2 Student-Project Allocation 4
2.3 Problem Solvers 6

3 Analysis and Requirements 8
3.1 Analysis of the Toolkit 8

3.1.1 Back-End 8
3.1.2 Front-End 10
3.1.3 Hosting 10
3.1.4 Different Versions 10
3.1.5 Gaps in the current System 11

3.2 Requirements 11
3.2.1 User Stories 11
3.2.2 Functional Requirements 11
3.2.3 Non-Functional Requirements 12

4 Design 13
4.1 Student-Project Allocation Problem Class 13

4.1.1 User Interface 13
4.1.2 Abstract Models 14
4.1.3 Instance Generator 15
4.1.4 One-Sided Solvers 16
4.1.5 Two-Sided Solvers 16
4.1.6 Readers and Writers 17

4.2 User Input and General Usability 17

5 Implementation 19
5.1 Student-Project Allocation Problem Class 19

5.1.1 User Interface 19
5.1.2 Models and Flows 20
5.1.3 Random Instance Generator 22
5.1.4 Solvers and Algorithms 22

iv

5.1.5 Readers and Writers 24
5.1.6 Stability Checker 25

5.2 General Improvements 25
5.2.1 Maximum Popular Matching in Stable Marriage 25
5.2.2 User Input and General Usability 26
5.2.3 Continuous Integration and Development 27
5.2.4 Bugs in the Previous System 27

6 Evaluation 28
6.1 Functional Testing 28
6.2 Empirical Evaluation 28
6.3 User Study 32

7 Conclusion 34
7.1 Achievements 34
7.2 Reflection 34
7.3 Future work 35

Appendices 36

A Appendices 36
A.1 Application Screenshots 36
A.2 Setup and Quickstart Instructions 39

A.2.1 Folder Structure 39
A.2.2 Requirements and Installation 39
A.2.3 Setup 39
A.2.4 Usage 39
A.2.5 Features and Manual 39
A.2.6 Testing 39

A.3 Adding New Algorithms 40
A.4 General Contribution Guidance 41
A.5 Test Cases 42
A.6 Code Contributions 43

A.6.1 Core Front-End Changes 43
A.6.2 Core Back-End Changes 43

A.7 SPA Stable Algorithm Pseudo-Code 46
A.8 User Study Information Sheet 47
A.9 User Study Task Sheet and Questionnaire 49
A.10 User Study Ethics Checklist 55
A.11 User Study Responses 57

Bibliography 62

1

1 Introduction

1.1 Motivation
Matching algorithms are used to find pairwise assignments. In the context of agents, the goal
is to organise the agents so that some criteria are satisfied, such as maximum allocation size,
capacity restrictions, or optimal preference satisfaction. For matching under preferences, there
are many well-studied problem classes that are of complexity-theoretic and real-life relevance.
Student-Project Allocation (SPA), for example, is a problem faced by schools and universities all
over the world, with hundreds of participants in the Honours project allocation at the University
of Glasgow alone. The model is also applicable to other contexts, for example in wireless network
engineering. Therefore, it is important to have fair, stable, and efficient algorithms.

For research and demonstration purposes, it is important to provide tools to the community
that make these algorithms accessible. The Matching Algorithm Toolkit (Toolkit) is a general-
purpose matching web application currently available at https://matwa.optimalmatching.
com/ which has been developed by many different contributors within the University of Glas-
gow’s School of Computing Science. It provides features such as solving the House Allocation,
Hospital Resident, and Stable Roommate problems using a range of state-of-the-art algorithms,
uploading or randomly generating problem instances, and showing or downloading the results.

1.2 Problem Statement
With almost 500 Java classes in the back-end service alone, the Toolkit has grown to a substantial
software project accumulating many matching algorithms not easily available or usable elsewhere.
Over time, many inconsistencies and bugs have been introduced, and the general usability
and feature set of the application could be improved. Also, recent research related to the SPA
problem class, a generalisation of the Hospital Resident model, has yielded many algorithms and
complexity results important both in theory and practice. However, the problem class is yet
to be implemented and integrated with the Toolkit. Therefore, this project aims to improve
and extend the Toolkit, addressing usability and functionality issues and implementing the SPA
problem class in front- and back-end with all relevant features that the system should provide.

1.3 Outline
• Chapter 2: will provide a basic overview over matchings and popular matching problems,

introduce the Student-Project Allocation problem, its variants, and relevant results, and
conclude by mentioning different software to solve matching problems under preference.
• Chapter 3: will introduce and analyse the Matching Toolkit system before the changes

and outline the project requirements.
• Chapter 4: will present the design considerations and choices for the changes.
• Chapter 5: will show how the changes were implemented in the system.
• Chapter 6: will present the set up and results of multiple types of evaluation and testing.
• Chapter 7: will conclude the dissertation and outline directions for future work.

https://matwa.optimalmatching.com/
https://matwa.optimalmatching.com/

2

2 Background

Lots of research has been conducted in the field of matching problems and algorithms for problems
involving preferences. First, an introduction to matching will provided, then a focussed overview
of the Student-Project Allocation problem and relevant results presented, and finally an overview
over existing related software shown.

2.1 Matching Problems
A graph 𝐺 is a set of vertices 𝑉 combined with a set of edges 𝐸. 𝐺 is called bipartite if 𝑉 can be
partitioned into two disjoint and independent sets 𝑈 ,𝑈 ′ so that every edge in 𝐸 connects a vertex
in 𝑈 with a vertex in 𝑈 ′. A matching in 𝐺 is a subset 𝑀 ⊆ 𝐸 of the edges so that no two edges in
𝑀 have a vertex in common. A maximum cardinality matching in 𝐺 is a matching containing
the largest possible number of edges. For bipartite graphs, such a matching as in Figure 2.1 can
be found in 𝑂 (

√︁
𝑛(𝑛 +𝑚)) time, where 𝑛 = |𝑉 |, 𝑚 = |𝐸 |, using the Hopcroft-Karp algorithm

(Hopcroft and Karp 1973). For non-bipartite general graphs, such a matching as in Figure 2.2
can be found in the same time complexity using Edmonds’ algorithm (Micali and Vazirani 1980).

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

Figure 2.1: Maximum cardinality matching in
a bipartite graph

𝑎

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

Figure 2.2: Maximum cardinality matching in
a non-bipartite graph

When dealing with weighted graphs, that is a graph 𝐺 as above together with an assignment
𝑤 : 𝐸 → ℝ so that 𝑤 (𝑒) ≥ 0 ∀𝑒 ∈ 𝐸, the cost of a matching 𝑀 is given by 𝑐 (𝑀) = ∑

𝑒∈𝑀 𝑤 (𝑒).
Naturally, the question of a minimum cost matching arises. Using the Hungarian algorithm, a
minimum cost maximum cardinality matching can be found in 𝑂 (𝑛3) time in a bipartite graph
(Kuhn 1955). This problem can also be modelled using s-t flows by constructing an appropriate
network from 𝐺 , for bipartite 𝐺 . Then, flow algorithms such as the Ford-Fulkerson algorithm
or even faster algorithms such as by Orlin (2013) can be applied to find minimum cost maximum
flows. These can then be converted into a matching, leading to a time complexity of 𝑂 (|𝐸 |𝑓)
time, where 𝑓 is the flow value of the maximum flow.

Now, if vertices are considered agents, then a matching is an assignment of pairs of agents. In
the real world, agents commonly have preferences over their assigned partners. In the case of
bipartite sets of agents, preferences can be one-sided, that is members of one set of agents has
preferences over members of the other set of agents, or two-sided, meaning that each member has

3

preferences over members of the other set of agents. Note that these preferences can be complete,
meaning that every agent has preferences over every other relevant agent, or incomplete, and
that preferences can have ties, that is some agents can have indifferences over some of their rated
agents. Complete lists and no ties will be assumed unless specified otherwise. In a matching, these
ordinal preferences can be measured by a profile. A profile 𝑃 is an 𝑟-dimensional vector, where
𝑟 is the maximum length of a preference list, and the first position accounts for the number of
first choices achieved in the assignment, the second position accounts for the number of second
choices achieved, and so on. The cost of a matching 𝑀 , in this case, can then be defined by
𝑐 (𝑀) = ∑𝑟

𝑖=1 𝑟 ∗ 𝑃𝑟 , the sum of linearly scaled rank positions.

The following are some widely studied matching under preferences problem classes, with infor-
mation taken from Manlove (2013):
• House Allocation (HA): a bipartite matching problem with one-sided preferences. Ap-

plicants have preferences over houses, each applicant can be assigned to at most one house,
and each house can be assigned to at most one applicant (in the case of CHA, houses also
admit capacities larger than one). A real-world motivation: university accommodation
where students can rank their potential homes in order of personal preference.
• Stable Marriage (SM): a bipartite matching problem with two-sided preferences. Each

group of agents has preferences over members of the other group, one group proposes to
members of the other group, and each agent can be paired with at most one other agent.
A real-world motivation: the dating market where people have preferences over their
potential partners but can marry at most one.
• Hospital Resident (HR): a bipartite matching problem with two-sided preferences. A

generalisation of SM where one set of agents admits capacities larger than one. A real-world
motivation: new doctors (residents) apply for graduate jobs at hospitals and have preferences
over their applications. Similarly, the hospitals have an upper limit on the number of new
doctors they can hire and have preferences over the applicants, for example, based on test
results or other qualifications.
• Student-Project Allocation (SPA): a bipartite matching problem with one- or two-sided

preferences. A generalisation of HR with three sets of agents: students, projects, and
lecturers. Lecturers propose any number of projects but have capacities on the number of
students they can supervise. Similarly, projects have capacities on the number of students
that can work on them. Students have preferences over the projects, and lecturers either
have no preferences, preferences over the students, or preferences over the projects they
offer. A real-world motivation: Honours project allocation at the University of Glasgow’s
School of Computing Science.
• Stable Roommates (SR): a non-bipartite matching problem with preferences. The agents,

all part of a single set, have preferences over each other. A real-world motivation: pairing
up roommates in University accommodation.

While cost-optimality seems to be the most intuitive, it might actually be more important in
practice to, for example, limit the number of agents that receive their worst choice, or to apply a
stability condition. Simplified, a matching is said to be stable if there are no unmatched agents
that could be accommodated in the matching and no matched agents that prefer each other
over their currently assigned partners (Manlove 2013). Other examples of optimality criteria are
rank-maximal matchings in which, simply speaking, the number of happy agents is maximised, or
generous maximum matchings in which the number of unhappy agents is minimised (Kwanashie
et al. 2015).

Stability applies only to matching problems with two-sided preferences and is important in a
game-theoretic sense. Suppose a nontrivial SM matching is not stable but there are no unassigned
agents. Then there exists a pair of agents that are not assigned to each other but prefer each other
over their currently assigned partners. They, therefore, have an incentive to not abide by the
rules of the matching, therefore making their current partners unassigned.

4

Exactly this logic can be exploited in an algorithmic sense. The original Gale-Shapley algorithm
(Gale and Shapley 1962) for SM with complete preference lists operates by starting out with an
empty matching and maintaining a valid matching throughout. Members of one set successively
propose an assignment to agents of the other set that they have not yet proposed to, and if that
agent is unassigned or prefers the proposing one over their current assignment, they get assigned
to each other, otherwise that agent remains with their current partner. The algorithm is therefore
referred to as a deferred acceptance algorithm and can be implemented to yield a stable matching
in time complexity linear to the input size.

2.2 Student-Project Allocation
The SPA problem has been studied in various settings and under numerous optimality criteria.
Manlove (2013) describes the problem setup formally as involving three sets of distinct agents:
students 𝑆 = {𝑠1, ..., 𝑠𝑖 }, projects 𝑃 = {𝑝1, ..., 𝑝 𝑗 }, and lecturers 𝐿 = {𝑙1, ..., 𝑙𝑘 }. Each project 𝑝 ∈ 𝑃 is
offered by a single lecturer 𝑙 ∈ 𝐿 and the goal is to find an assignment of students to projects as a
subset of 𝑆 × 𝑃 so that every student is assigned to at most one project. A graph example with
three students, four projects, and two lecturers is shown in Figure 2.3. Furthermore, projects
and lecturers have capacities indicating the maximum number of students that can be assigned to
it/them. A project or lecturer is called under-subscribed or full if their capacity is not yet reached
or reached, respectively. Finally, students can provide a ranking list of projects, with the first entry
being their most favourite project and the last project being their least favourite project. They
can choose to rank as many projects as they would like to, with all non-rated projects considered
unacceptable. To find such a matching, a range of algorithmic techniques have been investigated,
such as integer programming (IP), flow approaches, and deferred acceptance algorithms.

𝑠2

𝑠3

𝑝2

𝑝3

𝑝4

𝑠1 𝑝1

𝑙1

𝑙2

Figure 2.3: A SPA Graph Example

Anwar and Bahaj (2003) solve basic one-sided models using IP techniques in which every student
𝑠 ∈ 𝑆 is assigned exactly one project 𝑝 ∈ 𝑃 . The objectives considered are to minimise the number
of projects supervised by any one staff member and the assignment cost.

Another approach is taken by Lavery (2003). They use a minimum-cost maximum flow algorithm
to find a cost-optimal matching after converting the SPA instance to an s-t flow. The work is
extended by Kwanashie et al. (2015) who use network flows to also find rank-maximal, greedy, and
generous maximum matchings in addition to cost-optimal matchings. A rank-maximal matching
is a matching that has lexicographically maximum profile (Irving et al. 2006). Here, the maximum
number of students are assigned to their first choice, then the maximum number of students are
assigned to their second choice, and continuing. Sizes of rank maximal matchings may vary,
however (Manlove 2013). Therefore, they also looked into finding greedy maximum matchings,
which are maximum matchings with lexicographically maximum profiles, by optimising with
respect to matching size and student preferences. Alternatively, in generous maximum matchings,
the minimum number of students are matched to their 𝑅th-choice project (where 𝑅 is the
maximum length of any students’ preference list) and then the minimum number of students are

5

matched to their (𝑅 − 1)th-choice project, and so on. In their general minimum cost maximum
flow-based algorithm using principles from Orlin et al. (1993) which can be used to find minimum
cost, greedy, and generous maximum matchings using appropriate network constructions, they
achieve a worst-case time complexity of 𝑂 (𝑚2log(𝑛) +𝑚𝑛log2 (𝑛)) where 𝑛 = |𝑆 | and 𝑚 is the
sum of all the students’ preference list lengths. In their faster algorithms for greedy and generous
maximum matchings, they are able to achieve a worst-case time complexity of 𝑂 (𝑛2𝑅𝑚).

Student Preferences Lecturer Preferences Project Capacities
𝑠1 : 𝑝1 𝑝2 𝑙1 : 𝑠1 𝑠2 𝑠3 𝑝1 : 1 𝑝2 : 2
𝑠2 : 𝑝2 𝑝3 𝑙2 : 𝑠2 𝑠1 𝑠3 𝑝3 : 2 𝑝4 : 1
𝑠3 : 𝑝1 𝑝3 Lecturer Capacities 𝑙1 : 2 𝑙2 : 1
Stable Matching {(𝑠1, 𝑝1), (𝑠2, 𝑝2), (𝑠3, 𝑝3)}

Figure 2.4: SPA-S Instance and Stable Matching

The one-sided preference model can be extended to two-sided preferences when lecturers also
express preferences over students (SPA-S), the projects they offer (SPA-P), or specific student-
project pairs (SPA-(S,P)). In the problem variant SPA-S, every student 𝑠 ∈ 𝑆 provides a strict
ranking of a subset of 𝑃 , each project of which is said to be found acceptable by 𝑠. Furthermore,
every lecturer 𝑙 ∈ 𝐿 provides a strict ranking of all students that find at least one of 𝑙 ’s projects
acceptable. A matching 𝑀 is an assignment such that every student finds their assigned project
acceptable and project and lecturer capacities are respected. This is an example of two-sided
preferences and here a matching is said to be stable if it does not admit a blocking pair. Manlove
(2013) defines a blocking pair as in Definition 1.

Definition 1 (SPA-S Blocking Pair) A student-project pair (𝑠𝑖 , 𝑝 𝑗) ∈ (𝑆 × 𝑃) \ 𝑀 is a blocking
pair of a matching 𝑀 , if:

1. 𝑠𝑖 finds 𝑝 𝑗 acceptable;
2. either 𝑠𝑖 is unsassigned in 𝑀 , or 𝑠𝑖 prefers 𝑝 𝑗 to their assigned project;
3. either

(a) 𝑝 𝑗 is undersubscribed and 𝑙𝑘 is undersubscribed, or
(b) 𝑝 𝑗 is undersubscribed, 𝑙𝑘 is full, and either 𝑠𝑖 is assigned to a project from 𝑙𝑘 or 𝑙𝑘 prefers 𝑠𝑖 to

their worst student assigned in 𝑀 , or
(c) 𝑝 𝑗 is full and 𝑙𝑘 prefers 𝑠𝑖 to the worst student assigned to project 𝑝 𝑗 ,

where 𝑙𝑘 is the lecturer offering 𝑝𝑘 .
Figure 2.4 shows such a SPA-S instance with three students, two lecturers, and four projects, as
well as a stable matching as a set of student-project pairs that satisfy the capacity constraints. Note
that there may exist multiple stable matchings for a given instance. To find such stable matchings,
Abraham et al. (2007) present two combinatorial algorithms, a student-oriented (SPA-student)
and a lecturer-oriented (SPA-lecturer) one, both running in linear time with respect to the total
length of the preference lists.

SPA-student returns a stable matching that is the best possible for the students. Precisely, they
arrive at the following theorem: "For a given instance of SPA-S, any execution of Algorithm
SPA-student constructs the stable matching in which each assigned student is assigned to the
best project that they could obtain in any stable matching, whilst each unassigned student is
unassigned in any stable matching" (Abraham et al. 2007). It is an extension of the original
Gale-Shapley algorithm for SM and also works on the basis of deferred acceptance.

SPA-lecturer returns a best-possible stable matching 𝑀 for the lecturers. Specifically, they prove
the following: "Each lecturer prefers 𝑀 to any stable matching in which they have a different set
of assigned students" and "Each student is unassigned or is assigned to the worst project he/she has
in any stable matching" (Abraham et al. 2007). It is therefore a trade-off to optimise the matching

6

with respect to the students’ or lecturers’ preferences. However, SPA-S stable matchings are
related, as the Unpopular Projects Theorem (Theorem 1) by Abraham et al. (2007) shows.

Theorem 1 (Unpopular Projects Theorem) For a given SPA instance, the following holds.
1. Each lecturer has the same number of students in all stable matchings.
2. Exactly the same students are unassigned in all stable matchings.
3. A project offered by an under-subscribed lecturer has the same number of students in all stable

matchings.
Complete and strict preference lists in SPA-S are not always suitable in practice though. SPA-ST
is the extension allowing ties in the preference lists. Here, a matching can be weakly stable,
strongly stable, super stable, or none as adapted from other stable matching problems by Abraham
et al. (2007). Although a weakly stable matching always exists, Cooper and Manlove (2018) show
that finding a maximum size weakly stable matching is NP-hard and provide an approximation
algorithm achieving a size of at least 23 of the optimal based on approximation techniques from
Király (2013). For strong and super stability, Olaosebikan and Manlove (2019) and Olaosebikan
and Manlove (2018) provide the first polynomial time algorithms to find such matchings optimally
or report that none exist. Olaosebikan (2020) also contributes IP formulations for these problems
for experimental purposes and evaluates the existence and sizes of stable matchings empirically
on random and real-world data. Furthermore, they extend Theorem 1 to SPA-ST.

A natural extension is to introduce lower quotas on the projects, lecturers, or both. Cooper
(2020) investigates a similar setting extending SPA-ST to lecturer targets indicating a preferred
number of allocations and calls the problem SPA-STL. The author provides polynomial time
algorithms when optimizing for various target objectives without stability, proves that combined
with stability the problem becomes intractable, and presents IP formulations for the problems.
Similarly, SPA with lower quotas and project closure was studied by Monte and Tumennasan
(2013) and extended by Kamiyama (2013) to the case where student preference lists may be
incomplete, but both only consider one-sided preferences of students over projects. Biró et al.
(2010) studies the college admissions with lower and common quotas problem (CA-LQ) which,
structurally, is closely related to SPA-S with lower quotas. They find that the problem is NP-hard
in general, but tractable under tight conditions, and that a stable matching may not exist at all.
Other papers such as by Arulselvan et al. (2018) also investigate related structural and algorithmic
properties of matching with lower quotas, but without considering stability and focussing on
cardinal utilities rather than ordinal preferences.

Other applications of the SPA model outside of student allocation can be found, for example, in
user and channel assignments in multi-cell networks such as presented by Baidas et al. (2019).
Another special case of the SPA model is discussed by Elviwani et al. (2018), who assign workers
to posts in institutions based on performances and preferences, which could be extended to
department segmentation for large institutions when using the full SPA model.

2.3 Problem Solvers
Various software tools such as in Table 2.1 have been developed to solve matching problems.

The online tool by Oozeer (2019) (henceforth referred to as A) visualises matching algorithms,
but does not take preferences into account. An online tool by Technical University of Munich
(2016) (B) lets the user apply general graph matching algorithms such as the Hopcroft-Karp
algorithm (Hopcroft and Karp 1973), as well as letting the user find matchings in weighted
bipartite graphs using the Hungarian method (Kuhn 1955). Similarly, Halim (2011) (C) also
lets the user find matchings in weighted graphs with their tool, but also does not account for
two-sided preferences.

7

Tool Problem
Classes

Upload
Instances

Random In-
stances

Web Inter-
face

Export
Matching

Multi-
Algorithm

A Graphs No No Yes No No
B Weighted

Graphs
Yes Yes Yes Yes No

C Weighted
Graphs

Yes Yes Yes No Yes

D SM, HR Yes Yes Yes No Yes
E HA, SM, HR No Yes Yes No No
F SPA Yes No No Yes No
G SPA Yes No Yes Yes No
H, I, J SPA Yes No No Yes No
Toolkit HA, SM, HR,

SR
Yes Yes Yes Yes Yes

Table 2.1: Comparison of Existing Solvers

The Matching Algorithm Visualiser (Lau 2021) (D) can solve stable marriage and hospital resident
instances and visualises the algorithm in a user-friendly way. Similarly, Ferris and Hosseini (2020)
(E) also provide stable matching algorithms for stable marriage, hospital resident, and house
allocation in their tool, but does not allow the user to upload instances or download results.

Regarding SPA, ProjectsGeek (2017) (F) provides an offline software tool promising to solve
SPA instances, but the input, algorithms, and output are unclear. Morey (2021) (G) provides
a special-purpose web application for SPA-S that lets the user upload instances in separate files
and claims to use an implementation of the student-oriented stable matching algorithm by
Abraham et al. (2007) (H). As previously noted, Lavery (2003) (I) and Kwanashie et al. (2015)
(J) implemented SPA-student and one-sided profile- and cost-optimal algorithms in Java, but
neither is easily accessible without setting up the special-purpose code locally.

Finally, the Matching Algorithm Toolkit (University of Glasgow 2023) (Toolkit) is a general-
purpose matching web application developed over time within the University of Glasgow’s
School of Computing Science by at least 18 past contributors. It lets users find matchings for
instances of the house allocation, hospital resident, and stable roommate problem classes using a
range of algorithms for each, upload or randomly generate instances, and show or download
the results. There have been at least six BSc, MSc, and MSci projects dedicated to developing
parts of the system, many still in use, some discontinued, and some redeveloped. With almost 500
Java classes in the back-end code alone, this project has grown to a substantial software project
accumulating many state-of-the-art matching algorithms not easily available elsewhere.

The project started out as a command-line version in an effort to make matching algorithms
available in a more standardised way. Remta (2010) then designed and implemented a web
back-end to bring everything together and originally considered SPA but did not integrate
it. Lazarov (2018) then built a front-end web application and extended the existing back-end.
Several other students and researchers have extended the application over time, for example by
adding more algorithm implementations and integrating graphs and visualisations. However,
although Kwanashie (2015) has already implemented suitable one-sided SPA algorithms and
Lavery (2003) and Zhang (2019) already implemented student- and lecturer-oriented two-sided
stable SPA-S algorithms, respectively, SPA is not a part of the Toolkit so far. Another problem is
that in terms of version control, there are many different offline versions of the codebase used by
the online version and many extensions such as maximum popular matching for SM by Yang
(2022) that are not actually reflected in the live version.

It is assumed that other internal special-purpose student allocation applications exist across uni-
versities, but to the best of the authors knowledge, no public ones follow the SPA-S model and
none are general-purpose online matching web applications.

8

3 Analysis and Requirements

The background section has shown that there are no general purpose web application that
provides a selection of SPA algorithms. However, the Toolkit is a user friendly web application
that already provides other matching problem classes and is therefore a suitable base to extend
to SPA. Furthermore, the Toolkit also has potential to be extended in other ways, and needs
some crucial steps to comply with general software engineering best practices and to increase the
overall usability, as this section will show.

3.1 Analysis of the Toolkit
The Toolkit follows the classic client–server model and consists of a front-end (Matching Algo-
rithm Toolkit Web Application, short MATWA) and a back-end (Matching Algorithm Toolkit
Web Service, short MATWS). The current available problem classes are House Allocation, Hos-
pital Residents, Stable Marriage, and Stable Roommates and the user is able to choose between
uploading their own problem instance or generating problem instances randomly.

Figure 3.1 shows a typical interaction between the user in the front-end and the server in the
back-end when requesting to solve a randomly generated instance. After the user selects a problem
class and chooses to generate a random instance and its relevant parameters, the back-end reads
and verifies the instance parameters, generates the problem instance model randomly, converts
the model to a string and verifies it, determines which algorithms are applicable to this instance,
and returns the instance string and list of available algorithms. The user then selects which
algorithms to run, which triggers the back-end to convert the instance string back to an instance
model, generates solver objects for each requested algorithm, solves the instance, calculates the
matching statistics, and generates relevant results. The user is then displayed the results in the
front-end. Note that these are common steps between all problem classes.

3.1.1 Back-End

The MATWS is a standalone REST API that provides three public endpoints, FileCheck,
ParameterCheck, and AlgorithmRunner. A REST API is stateless and provides endpoints in form
of exposed URLs whose input and output format is of a specified format, usually specified as
JSON or XML.

• FileCheck is called when the user chose to upload their own instances. It takes the problem
class and instance strings as input and returns a status, instance strings, and list of applicable
algorithms.
• ParameterCheck is called when the user chose to generate random instances. It takes the

problem class and relevant parameters as input and returns a status, instance strings, and list
of applicable algorithms just like FileCheck.
• AlgorithmRunner is called when the user chose a subset of the applicable algorithms to

their instances. It takes the problem class, algorithm name, and instance strings as input,
and returns a status, algorithm name, number of matchings found, list of those matchings,
statistics, and graphs (if applicable).

9

User selects problem class.
User selects random generator input.

User selects instance parameters.

Read and verify instance parameters.
Generate instance model.

Convert model to string with writer.
Read instance string with reader to validate.
Determine applicable algorithms for instance.

User selects algorithms to run.

Convert instance from string to model using reader.
Generate solver objects for each requested algorithm.

Solve instance and calculate stats.
Generate matching results and matched instance results.

User sees results.

POST ParameterInput

return instance

and algorithms

POST AlgorithmInput

return matched instance,

matching, and stats

Front-End

Back-End

Figure 3.1: Typical interaction when solving a random instance with the Toolkit

The service is built on top of Spring Boot, a Spring-based Java framework that simplifies the
configuration overhead when building a REST API. Naturally, the back-end software is written
in Java, tested using JUnit, and organised with Maven for dependency management and lifecycle
processes.

Many different object-oriented software engineering patterns are followed. For example, most
objects are created from abstract factories and builders (creational patterns). From the structural
patterns, the adapter pattern is used to port between the core service logic and different legacy
implementations of the algorithms, and the composite pattern is leveraged to to deal with different
problem classes, as each is treated the same in the API logic flow but requires different reader
and writer classes, for example. From the behavioural patterns, the state pattern allows objects
to change their behaviour based on the specific problem instance parameters, for example the
self-validation method of problem instance models based on whether it has one- or two-sided
preferences.

Note that this service is a substantial piece of software, with almost 500 java classes implemented.
The overall organisation can be summarised as follows:

• API: Abstract interfaces for every implemented class, following creational engineering
patterns. This is not to be confused with the web service API.
• Legacy: Various algorithm implementations from different engineers for all problem

classes, many with their own utilities such as readers, writers, and further algorithms and
models they depend on.
• Matchings: Implementations of a generic matching, matching stats, and a respective

factory.
• Generators: Implementations of generators and instance parameters for all problem classes.
• Models: Implementations of models for agents, preferences, instances, networks, etc.
• Readers: Readers to convert from an instance string to an instance model for every problem

class as well as abstract readers, factories, and utilities.
• Writers: Writers to convert model objects to strings, such as for instances, matchings,

matched instances, and statistics. For each type, there exist problem-class-specific im-
plementations, as well as legacy-code specific implementations for some problem classes,
and factories. Furthermore, for each implementation, there generally exists a legacy GUI
version and an HTML version which is used for the current web service.

10

• Solvers: Problem-class specific solver classes that inheret from abstract solvers and are
generated from factories. Each legacy algorithm has its own adapter class to convert
instances and matchings appropriately.
• Webservice: Request and response formats of the web service and its core logic

(SpringModel).

3.1.2 Front-End

The MATWA is a standalone Django application serving HTML and static files (CSS, JavaScript) to
the user. It is written in Python and uses jQuery and Bootstrap components and furthermore relies
on JavaScript dependencies for features such as file input, result zipping, and graph visualisation.

The main functionalities are available on a single page, which makes several different API calls
depending on the user’s actions. The main tabs within this page open dynamically and are
problem class selection, input, parameters, algorithms, and results, which lines up with Figure
3.1. They open sequentially and the user cannot jump ahead and skip a step, but can go back and
modify previous steps. At any time, there is at most one tab expanded to the user. Other features
are opening the user manual on a separate page, saving the instances, and saving the results.

The design of the front-end is kept minimal, with a simple grey-green color scheme. User input
is handled through mouse clicks and number fields only.

The project is organised following standard Django guidance. Note that the parameter forms for
random instance generation are problem-class-specific and are handled using separate HTML
forms that are dynamically imported into the main page.

3.1.3 Hosting

The front- and back-end services are both hosted on the same physical machine, Mithril, an
Ubuntu server located in the School of Computing Science at the University of Glasgow. Mithril
hosts various projects associated with Professor David Manlove, each of which is run in a separate
virtual machine (matwa for MATWA and MATWS), and runs nginx as a common front-end
for all web apps to serve static files. The URLs matwa.optimalmatching.com and matws.
optimalmatching.com are being redirected to ports 8008 and 9115 on matwa, respectively.
These are served from matwa using a Django production server and the compiled Spring Boot
application, both started automatically on boot from systemmd service files.

Currently, there are no continuous integration and deployment procedures in place for the
Toolkit. The server is being updated manually by connecting to the campus network, either
physically or using a VPN connection, then connecting to the school’s sibu network, again,
either physically or using an SSH connection, and finally connecting to Mithril using an SSH
connection. Then, the source code stored at /opt/boris/ can be changed directly. HTML files
are synced automatically, other static files need to be synced with nginx outside of matwa, and
the back-end needs to be recompiled and the service restarted. Access to developers is given by
current maintainers on request.

3.1.4 Different Versions

Similarly to the deployment, there is no version control system in place for the Toolkit. As
mentioned in the background section, there have been at least 18 contributors on the project,
with no strict project management or software engineering requirements. Over time, some
inconsistencies and bugs came along due to the complexity of the project. Similarly, there are
multiple different offline codebases of the Toolkit, each with differences ranging from minor
fixes, to major algorithm contributions. For example, one MSc student implemented a maximum
popular matching algorithm for the SM problem and attempted to integrate it in the codebase,

matwa.optimalmatching.com
matws.optimalmatching.com
matws.optimalmatching.com

11

but the changes were never synced with the live version. Also, the command line toolkit has
some more algorithms, which are not integrated with its GUI or the Toolkit.

3.1.5 Gaps in the current System

The major gaps in the current system can be summarised in three blocks: the SPA problem class
is missing completely, there are bugs and minor features that, if addressed, would greatly increase
the usability and correctness of the system, and there are engineering challenges such as version
control and deployment. One goal is to combine the most significant features and extensions into
a single version, set up a proper git-based version control system, and extend the web application
with usability-increasing features and the SPA problem class.

3.2 Requirements
The requirements derived from the above analysis combined with the user stories below are
grouped into functional and non-functional requirements and prioritised using the MoSCoW
method.

3.2.1 User Stories

As a student
I want to solve random instances of the SPA problem
So that I understand what a possible outcome of the algorithm looks like.

As a project coordinator
I want to solve custom instances of the SPA problem
So that I can find a stable matching for my instance or report that none could be found.

As a researcher
I want to try out different parameters when generating random instances of the SPA problem
So that I can run matching algorithms on them.

As a developer
I want to contribute to the codebase using version control
So that software engineering best practices can be followed.

As the application owner
I want to have a universal version of the application
So that all developed features are available in this version.

As a user
I want to see the most current stable version of the application
So that I can use all the available features.

As a user
I want to have generous guidance from the system
So that I know how to use it appropriately.

3.2.2 Functional Requirements

Must haves:
• The system must allow the user to generate random instances of SPA.
• The system must allow the user to solve the SPA problem.
• The system must be able to display the results of the SPA matching algorithm to the user.

12

Should haves:
• The system should be able to check whether the SPA output matching is stable.
• The system should be able to output the SPA matchings to a file.
• The codebase should be hosted using git for version control.
• For each of the four problem classes, the system should allow the user to input custom

instance data directly without uploading a file.

Could haves:
• The resulting codebase could be merging previous extensions of the project into a single

version.
• The resulting codebase could address and fix some known bugs.

Would be nice to haves:
• It would be nice to have a continuous deployment procedure that integrates with the

version control system.
• It would be nice to provide the user with more guidance on what everything means, the

formatting standards and input requirements.

Amended would be nice to haves (agreed after project start):
• It would be nice if the system could work with SPA instances with one-sided and two-sided

(SPA-S) preferences.
• It would be nice if the system could find both student-optimal and lecturer-optimal stable

matchings of suitable SPA-S instances.
• It would be nice if the system could find minimum cost, greedy, and generous matchings.
• It would be nice to allow instances with or without IDs for all problem classes.

3.2.3 Non-Functional Requirements

• The extensions should integrate well with the existing versions of the project and act as a
single source of truth for the most up-to-date version and available features.
• The extensions should run reasonably fast (instances with less than 50 agents should be

solvable in less than one second) on the existing infrastructure.
• Any adaptions to the interface should remain intuitive.

13

4 Design

The requirements were translated into design choices that can be summarised under the SPA
extension and some general improvements.

4.1 Student-Project Allocation Problem Class
The design and the user experience of the SPA problem class were chosen to be as close as possible
to the existing problem classes to keep the application and its appearance coherent. Therefore,
there were generally no significant wireframes created before the changes were made. All final
designs for a SPA example flow can be seen in Figures A.1 - A.7.

4.1.1 User Interface

The user experience flow can be seen in Figure 4.1; note that the user can also go back to any
previous step at any point.

Problem Class
Selection

Input Selection Algorithm Selection Results

Figure 4.1: SPA User Experience Flow

All user choices, except the parameter selection in case of random instance generation, are made
through simple square buttons with rounded corners. The algorithm selection step allows the user
to select multiple algorithms if more than one is applicable to the instance. The results are then
displayed using a browser-like tab design, where each tab contains the results of the respective
algorithm.

The parameter selection lets the users choose attributes of the random instance to be generated
by the system. Specifically, the system allows the user to choose:

• Number of Agents: the number of students, projects, and lecturers.
• Total Capacities: the total capacities of the projects and lecturers. These are distributed

randomly by the system.
• Even Distribution: when this checkbox is ticked, the total capacities are distributed evenly

across the projects and lecturers, up to off-by-one errors due to integer divisibility.
• Student Preference List Lengths: student preferences can be restricted to a fixed number

or a range of projects. In the case of a range, the lengths of individual student preferences
in a generated instance vary randomly between the chosen bounds.
• One-Sided Preferences: here, the generator does not generate lecturer preferences over

students if ticked.
• Skewness Factors: these influence the difference in popularity between the least and most

popular projects and, if not one-sided, students. These can be controlled separately for the
agent groups.

14

• Probabilities of Ties: both student preferences and, if not one-sided, lecturer preferences
can have ties. The probability factor here determines the expected number of ties in the
preferences, controllable for either agent group individually.
• Number of Instances: generally, the user can choose to generate multiple instances at

once. Note that the main results overview will not apply in this case, as the user will only
be presented with summary statistics. The remaining section will therefore focus on single
instances.

Although the design and layout of the results tab are adapted from the other problem classes,
multiple changes were made. Figure A.6 shows an example results tab with the relevant matching
statistics, the matching itself as an expandable section, and the instance itself with assigned agents
highlighted in the preference lists. Noteworthy are the cost and profile distinctions between
different agent groups, which is something the system did not do previously. Furthermore, the
statistics are shown in a sensible order, whereas previously they were presented in random order
due to specific implementation details. Apart from this, the matching itself is presented to the
user in text form, whereas the other problem classes just present agent-agent pairs using IDs.
This was chosen to increase the usability of the system, as pairs would be confusing given that
the problem involves three sets of agents. It could be unclear to new users whether the system
shows student-project or student-lecturer pairs.

4.1.2 Abstract Models

As outlined in the analysis of the existing Toolkit, the back-end codebase abstracts most classes
and operations through high-level models in form of interfaces and abstract classes. Some core
models to consider in the integration of the SPA problem class are:

• Problem Model: In order to integrate SPA, it requires its own problem class and instance
model that extends and implements the general problem model. Some of the features needed,
for example, are storing the student, lecturer, and project agents with their respective links
and capacities, providing the ability to retrieve them in an indexed format, returning
summary statistics such as the total number of students, lecturers, projects, and capacities,
and finally providing the capabilities to check the model and making it consistent. When
checking the model, parameters about the existence of ties, completeness, and one-sidedness
should be detected and set within the model. When making the model consistent, on the
student side, all projects should be removed from the student’s preference list if the student
is not on the supervising lecturer’s preference list, i.e. is considered unacceptable by the
lecturer. On the lecturer side, all students that do not find any of the projects they offer
acceptable should be removed from their preference lists. This ensures efficient and correct
computations.
• Agent Model: The agent model is an abstraction that represents either a student, lecturer,

or project in the system. Although not every information is applicable to every type of
agent, the model captures, in particular, the agent name and ID, their preference list, their
original and remaining capacities, their engagements and number of links (for example
projects supervised by a lecturer), and provides functionality to add any of this information,
get the first and last agents on their preference list, get the preference list index of a specific
agent, and many more that are required by the algorithms.
• Instance Parameter Model: The instance parameters capture all of the information

required to fully determine the settings of the SPA random instance generator and the
model provides the functionality to get and set those values and check if present and of
the appropriate type. The parameters are mainly the ones described in the user interface
section.
• Matching Model: The matching model captures a matching in the system. It is a store of

agent-agent mappings, indexed on one type of agent - in SPA it is indexed on students

15

and contains student-project pairs. When querying the model, one can retrieve the whole
matching, check whether a specific student is matched, and if so, which project they are
matched with.
• Matching Stats Model: The statistics model contains information about a specific match-

ing and can compute and provide these as requested. In particular, it stores the total costs,
sizes, and profiles of the matching.

4.1.3 Instance Generator

Before designing the instance generator itself, a suitable instance format was required. Historically,
instances have been stored in text files, so a text-based schema was the go-to option. In the
existing Toolkit, HA and SR use similar schemata, while HR uses a slightly different schema with
more flexibility due to agent IDs and capacities. Therefore, the HR format was chosen as a basis,
and extended to have an additional section dealing with the project capacities and supervisors.

#Students #Projects #Lecturers
StuId: Pref1 Pref2 (...)
StuId: Pref1 Pref2 (...)
StuId: Pref1 Pref2 (...)
LecId: LecCapacity: Pref1 Pref2 (...)
LecId: LecCapacity: Pref1 Pref2 (...)
ProjId: ProjCapacity: LecId
ProjId: ProjCapacity: LecId
ProjId: ProjCapacity: LecId
ProjId: ProjCapacity: LecId

Figure 4.2: Toolkit Format

3 4 2
1: 1 2
2: 2 3
3: 1 3
1: 2: 1 2 3
2: 1: 2 1 3
1: 1: 1
2: 2: 1
3: 2: 2
4: 1: 2

Figure 4.3: Instance Example

3 4 2
1: (1 2)
2: 2 3
3: (1 3)
1: 2:
2: 1:
1: 1: 1
2: 2: 1
3: 2: 2
4: 1: 2

Figure 4.4: Ties Example

The resulting format can be seen in Figure 4.2, where the first line specifies three numbers 𝑥,𝑦, 𝑧
separated by a space. 𝑥 , specifies the number of students, 𝑦, specifies the number of projects, and 𝑧

specifies the number of lecturers. The following 𝑥 lines are for the preference lists of the students.
In each, the student ID is directly followed by a colon and a space, and the preferences follow as a
space-separated list. Ties are represented by putting brackets around the preference entries. The
following 𝑦 lines are for the preference lists of the lecturers. In each, the lecturer ID is directly
followed by a colon and a space, then the lecturer’s capacity, a colon and a space, and finally the
preferences as a space-separated list. Here, too, ties are represented by putting brackets around
the preference entries. If the instance only has one-sided preferences, all lecturer preference lists
are empty. Finally, the last 𝑧 lines capture the project information. Each line starts with the
project ID followed by a colon and space, then the project capacity followed by a colon and space
and finally the lecturer ID who supervises the project.

Figure 4.3 presents a conversion of the previously shown SPA instance in Figure 2.4 to the
Toolkit instance format and Figure 4.4 represents the same underlying instance but with one-
sided preferences and ties (students 1 and 3 find their ranked projects equally good).

The random instance generator itself takes the parameters outlined in the User Interface section.
Depending on whether the capacities should be distributed equally, the algorithm tries to do so
or otherwise assign them randomly to the lecturers and projects. The core logic of the generator
lies in the creation of the preference lists. For every student and lecturer’s preference list, after its
length is randomly determined in the specified range, project and student IDs, respectively are
picked randomly. The probability distributions follow a linear function determined by skewness
factors 𝑘𝑝 , 𝑘𝑠 , with the probabilities of picking the most popular project and student being 𝑘𝑝 and
𝑘𝑠 times as high as the probabilities of picking the least popular project and student. This results
in skewed preference lists, where popular projects and students are more likely to appear in the
first rank positions than less popular projects and students, and more likely to appear at all in the
case of incomplete preference lists.

16

4.1.4 One-Sided Solvers

The one-sided solvers will follow the minimum cost maximum flow-based algorithms as presented
in Kwanashie et al. (2015) to find cost-optimal, greedy, and generous maximum matchings. The
corresponding graph 𝐺 = (𝑉 , 𝐸) is constructed by taking the vertex set 𝑉 = 𝑆 ∪ 𝑃 ∪ 𝐿 ∪ {𝑠, 𝑡} and
setting up edges 𝑒𝑠,𝑠𝑖 from source 𝑠 to students 𝑠𝑖 with cost zero and capacity one, ensuring that
every student is matched to at most one project. Then let edges 𝑒𝑠𝑖 ,𝑝 𝑗

denote the preferences from
students over projects, with the cost determined based on the optimality criterion and capacity
one. Furthermore, let edges 𝑒𝑝 𝑗 ,𝑙𝑘 denote the project-lecturer links, with every project being
linked to exactly one lecturer and the capacity determined by the project’s capacity. Finally, let
edges 𝑒𝑙𝑘 ,𝑡 denote the lecturer links to the sink, with cost zero and the capacity determined by
the lecturer’s capacity. The last two capacities enforce the capacity restrictions. The student-
project cost in the case of cost optimality is simply the rank position 𝑟 of the project in the
student’s preference list, whereas for greedy matchings it is 𝑛𝑅−1 − 𝑛𝑅−𝑟 for where 𝑅 is the
maximum length of any students’ preference list, and for generous matchings it is 𝑛𝑟−1. The
authors argue why their respective cost functions ensure optimal criteria satisfaction when the
minimum cost maximum flow in the respective network is converted to a matching by taking
all 𝑀 = {(𝑠𝑖 , 𝑝 𝑗) such that flow(𝑒𝑠𝑖 ,𝑝 𝑗

) = 1}. Figure 4.5 shows such a network with edge labels
(𝑐𝑜𝑠𝑡, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦), constructed from the instance shown in Figure 4.4 and with a cost-optimal flow
highlighted. Specifically, this results in the matching 𝑀 = {(𝑠1, 𝑝1), (𝑠2, 𝑝2), (𝑠3, 𝑝3)} with cost 4.

𝑠 𝑠2

𝑠3

𝑝2

𝑝3

𝑝4

𝑠1 𝑝1

𝑙1

𝑙2

𝑡

(0; 1)

(0; 1)

(0; 1)

(1; 1)

(1; 1)

(1; 1)

(2; 1)

(1;
1)

(1; 1)

(0; 1)

(0; 2)

(0; 2)

(0; 2)

(0; 2)

(0; 1)

Figure 4.5: A Cost-optimal Flow

The one-sided solver in the Toolkit deals with this by taking a SPA instance in form of the
system’s model, converting it to an s-t network as described, running the algorithms from the
authors which are treated as legacy code in the system, and finally converting the flow into the
system’s matching model using the procedure described.

4.1.5 Two-Sided Solvers

For the two-sided solvers, the two classic SPA-S stable matching algorithms SPA-student and
SPA-lecturer by Abraham et al. (2007) that allow incomplete student preferences but no ties were
chosen due to their efficiency and universality. Here, too, legacy code is used in the Toolkit.

The pseudocodes for the algorithms can be found in Figures A.8, A.9. Let the projected preference
list of a project be the preference list of its supervising lecturer, restricted to the students that
find this project acceptable. On a high level, the student-oriented algorithms starts with all
students unassigned. Next, while there are unassigned students with non-empty preference lists,
they apply to projects on their list, leading to provisional assignments. These assignments will
be broken if project or lecturer capacity constraints are violated, removing the worst student

17

provisionally assigned to the project or lecturer, respectively. If a project or lecturer becomes
full, preference list entries are removed from the students and projected preference lists to ensure
there will be no applicants to this project or lecturer, respectively, that are worse than its worst
current assignee.

Similarly, the lecturer-oriented algorithm also starts with all students unassigned. Now, while
there is some lecturer with free capacity that offers a project with free capacity and there is a
student on that project’s projected preference list that is not provisionally assigned to this project,
then this student is either free or prefers a project with free capacity offered by this lecturer to
their current assignment. In this case, the first such student in the lecturer’s preference list will
be provisionally assigned to the first such project in that student’s preference list, breaking their
provisional assignment if necessary. Then, all less preferred projects from the student’s preference
list and the student from the respective projects’ projected preference lists are removed. This
ensures that no project is subsequently offered to that student that is worse than their current
provisional assignment.

Both algorithms terminate with the final provisional assignments being stable matchings. On a
high level, the software flow is the following: the SPA instance in form of the system’s model
is converted to the respective legacy code models, solved using the algorithm, returned, and
converted back to the Toolkit’s matching model.

4.1.6 Readers and Writers

The Toolkit requires an instance reader for SPA which takes as input an instance string and
outputs a problem class model, as well as a writer for each of matched instance, matching, and
matching statistics which take as input the respective internal models and output strings to be
presented by the front-end, displaying the respective information in a structured format.

The design of the instance reader is fully determined by the input format outlined in the instance
generator design section and works by breaking down the instance string into the respective
agents and their information, converting them into agent models, and capturing the instance as a
SPA problem class instance model.

The design of the writers follows the expected output format outlined in the results part of the
user interface design section. The matched instance presents the agents and their preferences
lists, with the matched agents highlighted. The matching presents the student-project pairs
themselves with the associated supervising lecturers. The matching statistics present the size,
costs, and profiles of the agents. Note that the output format is adjusted dynamically based on
whether the Toolkit is dealing with a one-sided or a two-sided instance.

4.2 User Input and General Usability
Text Box The file upload proved not flexible enough for past users of the Toolkit. A core
contribution on top of the newly implemented SPA problem class is a new way for users to input
their problem instances. In the input type selection, the user can now choose to input from
a text box as shown in Figure 4.6, in addition to the existing file input and random instance
generation. This text box is available for all problem classes and lets the users copy and paste their
own instances without uploading a file. Furthermore, the user can choose to dynamically add
and remove agent IDs at the beginning of the preference lines.

Flexibility Another contribution takes away some of the restrictions on the uploaded and pasted
instances to increase usability. For example, the system previously let users upload text files created
on Linux machines but broke when users tried to upload text files created on Windows machines.
Furthermore, the input format requires a very strict format, for example imposing empty space
characters as separators and disallowing tab spaces. A major inconsistency in the Toolkit was that

18

Figure 4.6: Text Box Input Example for an HR Instance

the input format for HA and SR instances required no agent IDs in the preference lines, but did
require these for HR and the first SPA design. The different types of input were incompatible
between the different problem classes for no reason, as the number of agents is given in the first
input line either way. The new design addresses all of these issues, both in the file uploading and
the new text box input features. Specifically, instances can now be entered with or without IDs
in the preference lines for all problem classes.

Approachability The previous user input design for the random instance generators used text
boxes for all number input fields, except for a checkbox for the even capacity distributions. This
led to confusion for first-time users, as the number of parameters to configure was overwhelming
and required a good understanding of how they affect the problem instance. Therefore, a new
design was developed, combining number fields with checkboxes and range slider fields as shown
in Figure 4.7 that let the user drag the slider from left to right to choose a value, with the exact
value indicated in red. This restricts the input domain to a valid range by default, but on top of
that, fields with restrictions on the domains were extended by a range indicator that tells the user
where the input number must lie. Furthermore, default values were added to, for example, the
number of agents fields, which the user can modify manually, to reduce the initial complexity.

Figure 4.7: SPA Parameter Input Design

User Manual Finally, the user manual, which is a page in the Toolkit, was improved by making it
more readable and updating it to include all up-to-date information. Specifically, large paragraphs
of text were partitioned into logical sections with headers and spacing and improved through
concise and clear language. Furthermore, a consistent writing and design style was imposed.
Also, a parameter guide was written and added that explains all non-trivial parameters of the
random generator tab for all problem classes. The information itself was updated to any new
changes made to the system and gives credit to all other contributors.

19

5 Implementation

To set up the Toolkit and start developing, a copy of codebase hosted on the live server was
received, as well as copies of student extensions of the codebase and other student implemen-
tations unrelated to the Toolkit. To mirror the system environment, a terminal-only virtual
machine with an Ubuntu Live Server 18.04.6 image was created using VirtualBox with bridged
network mode, and the setup instructions for the front- and back-end services by Lazarov (2018)
followed, including installing relevant dependencies as outlined in the new setup instructions in
the Appendix and mentioned in the Toolkit Analysis. For development, VS Code was installed
on the main Windows OS machine, using the SSH extension to connect to the virtual machine.
On the virtual machine, Python 2 and pip2, as well as relevant requirements, were installed, and
a new Python environment was created.

When following the existing setup instructions, there was a compiler error due to a false Java
Developer Kit version, which turned out to be a minor fix. After changing the web endpoints
according to the respective locally assigned IPs, both MATWA and MATWS loaded successfully
on the virtual machine and could be reached from a local browser on the Windows OS.

Note that in this section, relevant class, function and variable names will be in typewriter font.

5.1 Student-Project Allocation Problem Class
5.1.1 User Interface

The implementation of the user experience with the SPA problem class was, similar to the design,
chosen to be as close as possible to the existing problem classes to keep the application coherent.

In MATWA, the index.html file was extended by adding a new problem class section using
bootstrap components. Furthermore, the bootstrap layout of the existing components had to
be adjusted to allow enough space. Then, a new form was added that captures all of the input
fields for the SPA random instance generator, using a mix of number, check box, and range
slider input fields to be consistent with existing input types in the application. Every field is fitted
in the bootstrap structure, is assigned an id and name, set to be required, and provided with an
explanation label and a default value. Additionally, some inputs have an associated invisible help
block which can be populated dynamically when the user enters an invalid number.

Next, the existing jQuery logic was adjusted to include SPA. This entails adding additional user
flows and navigating to the right steps on user action. Additionally, in the AppClass JavaScript
logic, the parameters of the SPA form are validated to be of the right type, and some logic
checking is performed directly such as whether the project number exceeds the project capacity.
In these cases, the user is then prompted to enter a valid number, after being provided a message
detailing why the current one is not allowed, using the parameter’s help block.

It was decided that in the results section, it would be best to show the student and lecturer costs
and profiles individually, as well as a combined cost and profile. After implementing this through
existing logic, however, it displayed these statistics in random order because they are generated
from a Java HashMap in back-end which returns unordered key-value pairs. In order to show

20

the statistics in a structured and readable manner, the back-end information was split and sorted
based on the statistic names.

5.1.2 Models and Flows

With almost 500 Java classes implemented in the back-end codebase due to various extensions,
special cases, and a high level of abstraction, implementing a new problem class turned out to be
on the one side highly non-trivial and on the other side not requiring a complete redevelopment
of the codebase, but rather natural extensions of existing flows and models.

There are three main parts to the back-end implementation. One, there are abstract models
implemented through Java interfaces for almost every component, aiming at making the varying
implementations between problem classes behave similarly in the program flow. Second, there is
the core implementation logic inherited and extended from the original command-line toolkit
which provides all of the functionality such as generating and solving instances. Finally, there is
the implementation of the web service itself which handles requests and provides corresponding
responses by handling the internal orchestration of the core logic through program flows. Each
part required separate adjustments, with each of them going hand in hand with the others.

Before talking about the core implementation, it is worth outlining the internal flow of the
programs based on the request orchestration. The requests from the front-end service are either
of type FileCheck, ParameterCheck, or AlgorithmRunner, with each of them broadly explained
previously in the Analysis section. The orchestration is happening inside the SpringModel class,
with almost 2000 lines of code. The program flow for SPA is closely modelled after the other
problem classes, and every problem class is dynamically handled within the same function.

FileCheck parses the instance string passed in, verifies it, sets relevant internal flags, and returns
all available algorithms to the instance based on these flags and algorithm filtering. Specifically,
the implementation of the program can be summarised as follows, with some relevant class names
pointed out:

1. Parse Input
(a) Populate an object of abstract type InstanceReader with a new DefaultSPAReader

object generated from a factory class.
(b) Generate and populate a Model object of the problem using the newly generated

reader and make it consistent.
2. Set flags

(a) Check the Model and determine the instance parameters such as presence of ties,
one-sidedness, and complete preference lists.

3. Filter available Algorithms
(a) Based on the problem class, filter the list of available algorithms based on whether

they apply to instances with the given parameters.
(b) Populate Tooltips, i.e. high-level information on the algorithms, and return all.

The ParameterCheck operates similarly, but in addition, verifies the parameters and generates the
random instances. Specifically,

1. Process Parameters
(a) Parse the parameters passed from the front-end and put them in a Java HashMap

while converting them to the correct data types (e.g. Integer, Float, or Boolean).
(b) Create an InstanceParameterSPA.Builder object with relevant attributes to build an

InstanceParameterSPA object from it.
2. Generate Instances

(a) Populate an object of abstract Generator type with a new GeneratorSPANew object
using a factory class.

21

(b) Generate a Model object using the generator with the previously parsed parameters.
3. (The next steps are the same as in FileCheck...)

Finally, AlgorithmRunner initialises various variables, creates the solvers for the algorithms, solves
the instances, and accumulates the matchings and matching statistics:

1. Initialise
(a) For each algorithm, create Solver, Output, Matching, and StatsAccumulator objects.

2. Create Solvers
(a) Populate the abstract SPAFactory with an object of class DefaultSPAFactory.
(b) Populate the previously initialised Solver objects for each desired Algorithm object

created from the SPAFactory using a general factory for solvers.
3. Solve

(a) Populate an object of abstract type MatchingWriterFactory with an object of class
DefaultMatchingWriterFactory and generate a DefaultStatsWriter from it.

(b) Adjust to a SPAHTMLStatsWriter object from the GUIMatchingWriterFactory class.
(c) Populate the MatchedInstanceWriter with a SPAHTMLWriter object from a respective

factory class.
(d) Populate an object of abstract type StatsAccumulatorFactory with an object of class

StatsAccumulatorFactoryImpl.
(e) Solve the instance, capturing Matching, Stats, MatchedInstance, and return all.

One of the essential model classes for the SPA computations is the SPA problem model itself. As
previously mentioned in the design section, it extends and implements the general problem model,
stores the problem instance information, and provides many different features. By starting the
implementation assuming only SPA-S instances, it was easy to incorporate one-sided instances
and algorithms by adding an additional flag attribute in the SPA problem model that is true if there
are no lecturer preferences, and false if there are. Note that SPA-S instances are compatible with
the one-sided algorithms and the lecturer preferences are simply ignored, but clearly one-sided
instances are not compatible with the two-sided algorithms.

method makeConsistent():
if (instance is not onesided) and (incomplete preference lists):

for each student:
for each acceptable project of the student:

if student not acceptable to supervising lecturer:
remove project from preferenceList

for each lecturer:
for each acceptable student of the lecturer:

if student does not find any project offered by the lecturer acceptable:
remove student from preferenceList

Figure 5.1: Pseudocode for making a SPA-S Model Consistent

One challenge was implementing the method making the model consistent, with the pseudocode
shown in 5.1. This was achieved by treating the preference lists as linked lists. Furthermore,
checking whether the student finds a project of the lecturer acceptable was achieved by getting
all projects linked to the lecturer and checking whether any of them occur in the student’s
preference list.

The method checking the model is simply going through every agent’s preference list of the
instance, and if any of them have ties or incomplete lists (checked by comparing the number of
agents against the length of their preference list), setting the appropriate internal flags.

22

5.1.3 Random Instance Generator

Figure 5.2: SPA Generator Class Diagram (green: new, yellow: modified)

The random instance generation process is highly dependent on legacy implementations and
makes use of many abstract types and factories as can be seen in Figure 5.2. Implementing the
SPA generator here was a natural extension of existing code for the other problem classes and
required the modification of multiple existing classes as well as the implementation of some new
ones, with the logic being very close to the HR instance generator logic.

An object of abstract type Generator can be populated with a GeneratorSPAnew object us-
ing a GeneratorFactory. The generator has a method to generate an instance based on an
InstanceParameterSPA object of abstract type InstanceParameter. Here, first, arrays of Agent
objects are initialised for every agent type, namely students, lecturers, and projects. Then, a
GeneratorStrategy object is used to distribute the capacities among the projects and lecturers,
which are also stored in arrays. For each agent, the AgentFactory is then used to create a new
agent object with sequential unique ids and the generated capacities. Afterwards, each student
gets attached a random PreferenceList. If the instance is not to be one-sided, then the same
is done for the lecturers. Then, the projects are distributed among the lecturers, again using a
GeneratorStrategy feature and storing the results in an array. Lastly, based on this distribution
array, the lecturer objects are linked to their respective project objects, and the projects are set to
be in a bond to their respective lecturers. Finally, the ModelFactory object is used to create and
return an instance of a ModelSPA based on the students, lecturers, and agent object arrays.

5.1.4 Solvers and Algorithms

Figure 5.3: SPA Solvers Class Diagram (green: new, yellow: modified)

The implementations of algorithms to find SPA matchings were largely treated as legacy code,
given that they are all accompanied by papers and extensive testing. However, each of the three
legacy codebases required a varying level of effort in order to be integrated into the Toolkit,
with the one-sided algorithms requiring the least work and the lecturer-optimal stable algorithm
requiring the most work.

23

As can be seen in Figure 5.3, for each algorithm, the Toolkit has a solver class, and for each
problem class, the Toolkit has a solver factory class. To fit in with the existing system, each of these
has an abstract interface model as well as a specific class implementation. The solver factory class
simply provides methods to generate solver objects for the available algorithms in the SpringModel.
Specifically, for SPA, the methods getSPA(), getSPALect(), and getSPAOneSided(AlgorithmType
type) were implemented to return implementations for the student-optimal, lecturer-optimal,
and one-sided implementations respectively.

One-Sided Solvers As can be seen in the declaration of the method getSPAOneSided, the three
one-sided algorithms are made available through the same solver class. This was possible because
the only algorithmic difference is the cost function for student-project edges as noted previously.
Therefore, the AlgorithmType has states Greedy, Generous, and Cost and the solver dynamically
adjusts the costs.

The MinCostMaxFlowSPA class is taken almost directly from the legacy codebase, made to work
with dynamic switching based on the type value and adjusted to fit in with the factory and
Toolkit codebase. For this, six new utility classes for the s-t network that came with the legacy
codebase such as Edge and Network were placed in a dedicated network model folder. The broad
implementation logic when the solver is tasked to find a matching for an instance is that the
instance is converted to a weighted network, checked to be valid, a residual network is generated,
and a greedy algorithm is used to find maximum augmenting paths and to regenerate the residual
network. Finally, when no augmenting path can be found anymore, the flow is converted into a
matching using a MatchingFactory. Overall, there were no major issues when porting the legacy
code to the Toolkit.

Student-Optimal Solver The student-optimal algorithm legacy implementation comes with its
own instance format, reader, and utility classes. To avoid extensive refactoring and take advantage
of the correctness testing previously conducted for the implementation, it is therefore treated as a
legacy code black box to port Toolkit instances to and convert back into a Toolkit matching, if
found, which aligns with legacy implementations of previously integrated algorithms.

In terms of implementation logic, the corresponding SPAImpl class in the Toolkit creates an
instance writer object that outputs the problem Model in the expected string format, reads in the
instance again with the legacy reader, runs the legacy matching algorithm, and iterates through
the matching results while adding found pairs to a new matching model object created from
the MatchingFactory. Potential errors and incompatibility issues are handled using classic Java
error-handling techniques and custom exception classes.

As a start was previously made by Remta (2010) to integrate this algorithm in an early version of
a matching API, some ideas could be adapted and required working out specific implementation
details. Overall, there were also no major issues here when porting this legacy code to the Toolkit.

Lecturer-Optimal Solver The lecturer-optimal algorithm legacy implementation is also a
standalone codebase. Here, the integration into the Toolkit was non-trivial, as most of the logic
was implemented in a God class that did everything from instance reading from file, constructing
the instance, populating the models and data structures, the solver algorithm, and writing the
output to a file, in a single method. Therefore, significant refactoring was required to handle
these features separately. Then, a new instance writer was implemented as a wrapper from the
Toolkit format to the input expected by the legacy code, together with a new instance writer
factory to align with the Toolkit practices.

The SPALecImpl class implementation follows the same logic as the student-optimal solver class,
with some adjustments to account for implementation-specific details of the legacy code.

24

5.1.5 Readers and Writers

When the back-end writes SPA information, it must differentiate between writing a SPA instance,
SPA matching, SPA matched instance, or SPA matching stats. Each is implemented in a separate
class. Figure 5.4 shows how the instance writer is connected, but the other readers and writers
follow a very similar logic.

Figure 5.4: SPA Instance Writer Class Diagram (green: new, yellow: modified)

• SPA Instance Writer: The DefaultStandardInstanceWriterFactory is used to generate a
StandardInstanceWriterSPA object of abstract type InstanceWriter which extends some
abstract classes. The main method of the new writer loops through the agents and prints
the information in the desired instance format by making use of existing functions to
generate, for example, preference list lines.
• SPA Matched Instance Writer: As the matched instance writer is an extension of the

instance writer, the set up is similar. In order to comply with the existing architecture
of the Toolkit, an empty MatchedInstanceWriterSPA was set up, to be extended by the
MatchedInstanceHTMLWriterSPA. The latter uses existing code to generate the output line
by line and to deal with agent types, capacities, and IDs dynamically. Furthermore, the
IDs of agents in the preferences that are matched with that agent are highlighted for the
HTML output.
• SPA Matching Stats Writer: Here too, were HTML and a non-HTML writers imple-

mented, specifically the SPAMatchingStatsWriter and the SPAHTMLMatchingStatsWriter.
While the former does not provide any major logic, the latter initiates the calculations of
matching size, student and lecturer costs, and student and lecturer profiles. These are then
appended to the output in appropriate string form. Furthermore, the matching for HTML
output is stored in a textual form saying which student is matched with which project, as
well as the corresponding supervisor. This is implemented through a loop through the
matching.
• SPA Matching Writer: To output a SPA matching, the existing
StandardMatchingWriterImpl could be used without extension due to integration with the
abstract matching model.

While the student profile could be easily computed using existing code, the lecturer profile had
to be calculated manually. This is implemented together with the SPA cost calculations in a
Util class, which differs from the other problem classes due to the split between student and
lecturer costs. For the lecturer profile, a Java HashMap from integer to integer is created to store
the counts of index positions in the matching. Then, by nature of the matching type indexing,
the program loops through the matched students, gets the lecturer of their projects, queries
the profile position this student has in the lecturer’s preference list, and increases the respective
counter in the HashMap. The HashMap is then converted back into an integer array of counts.

When the back-end reads a SPA instance, the DefaultStandardReaderFactory is used to gen-
erate a StandardReaderSPA object of abstract type InstanceReader. The new reader class ex-
tends the abstract class AbstractStandardReaderLogic which again extends the abstract class
AbstractTextReader. This enables an abstraction so that the main method of the SPA reader just
parses the first line of the input which contains the number of agent lines following, then loops

25

through these lines and converts them into Agent objects and PrefList objects and links them
according to the input.

5.1.6 Stability Checker

Note that while the legacy code of the one-sided solvers is highly compatible with the Toolkit,
the stable algorithms are treated as black box algorithms and need appropriate porting through
readers and writers. To verify that this is done correctly, a stability checker is a suitable tool.
Specifically, the checker should check whether given a problem instance and a matching, the
matching does not admit a blocking pair. This was designed to be a simple procedure that directly
follows the definition of a SPA-S blocking pair (Definition 1).

function isStable(model, matching):
for each student s:

for each acceptable project p:
l = p.supervisor
if (s is unmatched) or (s prefers p over s.project):

if p is undersubscribed:
if l is undersubscribed:

return False
if (l is full) and (s is matched with another project from l or l prefers s to the worst student in

l.assigned):
return False

if (p is full) and (l prefers s to the worst student in p.assigned):
return False

return True

Figure 5.5: SPA-S Stability Checker Routine

Although the pseudo-code in Figure 5.5 is straightforward, the implementation turned out to be
more challenging. This is because the matching is only indexed on students but not on lecturers
or projects, and thus finding, for example, whether a student is matched with another project
from the lecturer, or finding the worst-rated assigned student to a lecturer, are not operations
implemented in the models. It, therefore, turned out to be necessary to create Java HashMap
objects storing project-to-student links, lecturer-to-student links, the number of students assigned
to a project, and the number of students assigned to a lecturer. Together with helper functions to
find the worst ranked assigned student to either a lecturer or a project and a method to check
which of two agents is preferred by a third agent, enabled the implementation of the referenced
pseudo-code without any major adjustments.

5.2 General Improvements
In addition to the extension to the SPA problem class, some general extensions and improvements
to the web app spanning all problem classes were implemented.

5.2.1 Maximum Popular Matching in Stable Marriage

Yang (2022) contributed a maximum popular matching algorithm implementation for the SM
problem with incomplete lists, found as a special case of HR in the Toolkit, to be integrated into
the Toolkit. This, however, was never integrated with the live codebase. As this was purely an
algorithm addition, no front-end changes were made, and no core logic in the back-end was
changed. Upon further inspection though, it turned out that by accepting the code changes

26

proposed by the author, the Toolkit codebase did not compile and run fully correctly anymore.
Specifically, existing Unit Tests failed due to unexpected output, and a model change was needed
in order for the correct algorithms to be returned. Also, some scripts were removed and loaded
through an insecure http connection, which most current browsers disallow.

Overall, this was a minor adjustment to the live codebase that makes a previously implemented
algorithm available to the users.

5.2.2 User Input and General Usability

Text Box The text box was implemented in such a way that no back-end changes were required.
Using a classic HTML text area field in the main page, styled using the same bootstrap components
that are used for the file input, the user can paste an instance in the right format directly into
the text box. The user experience flow is handled fully in jQuery, with the respective tabs to
open the text area and continue on to the algorithm selection tab being done through on-click
handlers on respective buttons to be consistent with the existing design. Adding and removing
the agent IDs is done through jQuery and JavaScript functions modifying the text area content
directly. The functions first check whether IDs are currently present, and are active or not based
on this. If IDs are not present but are requested by the user, the number of agents is parsed and
each agent line is given a sequential numerical ID starting at one for each agent type, as well as
the appropriate seperator. Similarly, if they are present but are requested not to be by the user,
the agent preference lines are parsed and the ID and seperater are removed. The user input is
then passed to the back-end as if it was the content of a file, using previously available features.

Flexibility In order to make the input from file and the new text box more flexible, there
were some front- and back-end changes required. Previously, HA and SR admitted instances
without Agent IDs, and HR, originally, SPA only admitted instances with Agent IDs. This major
inconsistency in the input types was overcome by investigating the reader logic and how they
interact with the agent and preference list object constructors. After making some adjustments
to each of the readers and fixing a bug in the agent constructor, the system is now able to read in
instances with and without IDs for all problem classes. Regarding the Windows file format error,
after some investigation, it turned out to be a problem with end-of-line characters. Windows
adds "\r\n" characters for return and newline, whereas Linux just adds "\n" for newline. The
input reader splits the lines based on the backslash n character and was unable to deal with
the remaining backslash r characters. Once discovered, this was a simple fix by converting the
end-of-line characters appropriately through a regular expression in JavaScript before passing to
back-end. Equally, tabs were not accepted as spaces. As tabs are not generally used in the input
format, here, too, a regular expression converting tabs to regular spaces fixed the problem.

Generator Forms Default values in the random instance generator parameter forms were
achieved through simply initialising the number fields with values, making them appear more
user friendly than empty fields. The sliders shown in Figure 4.7 were implemented using HTML
range slider input types with minimum and maximum values, as well as specifying the starting
value and step size. In order to show which value is currently selected, an HTML span entry
that is dynamically updated using JavaScript was created above each range slider, next to the
slider label. Lastly, the range indicators for each numerical parameter were achieved by simply
specifying the theoretical parameter bounds statically within the parameter label, see Figure 4.7.

User Manual Finally, the user manual relies mainly on pure HTML, with section opening and
closing achieved through jQuery. The implementation details of the manual restructuring and
rephrasing are restricted to introducing new sections in the HTML files and some simple CSS
styling properties.

27

5.2.3 Continuous Integration and Development

As a first step, the live version of the codebase as hosted on the server was uploaded to a private
GitLab repository that was newly created in the School’s matching group’s GitLab. After
configuring the GitLab and adding necessary users and permissions for stakeholders, the codebase
was cleaned up to only include relevant source code and not the compiled Java classes. Furthermore,
a Readme and other relevant documentation was created.

Next, the deployment on the live server was investigated, following the written guide of a
previous contributor to the Toolkit. Some steps were adjusted as needed, and after understanding
the setup, clarifying materials were created. Furthermore, a start was made on a continuous
deployment procedure, which could be done, for example, through GitLab CI/CD. However,
the potential maintenance overhead through version updates and authentication issues was traded
against the manual steps involved. Therefore, an efficient manual process to update the live server
was developed for future contributors (see Appendix).

5.2.4 Bugs in the Previous System

As previously mentioned, as the complexity of the Toolkit system and the number of different
contributors increased over time, some inconsistencies and bugs were introduced. These were
kept in a list of known bugs by the maintainer and addressed by this project:

• Input formatting: Windows text files and tab spacing not recognised as valid input. This
was already addressed in the section on input and usability.
• SR algorithms offered for SRI: This should not be the case for algorithms such as All
Stable Pairs, All Stable Matchings, and Egalitarian Stable Matching. This was ad-
dressed by changing the internal algorithm selection logic in the Webservice’s SpringModel
to exclude these algorithms in the presence of ties.
• Incorrect SR Costs: This bug was noticed previously and upon further investigation, it

turned out that the cost displayed in the SR algorithm results is double what it should be
for instances with an even number of roommates larger than three. The bug was fixed on
this assumption by the cost accordingly in the cost calculator utility.
• House Capacities are not shown in Matched Instances of CHA: Here, the matched

instance writer for the Housing Allocation problem class was adjusted to show the house
capacities as a mapping from houseId to houseCapacity similar to the project-capacity-
lecturer information in SPA.

28

6 Evaluation

There were three types of evaluation performed - functional testing, empirical measurements,
and a usability study.

6.1 Functional Testing
JUnit Testing JUnit tests were written for each SPA algorithm, extending the testing suites that
previously existed for the system and following roughly the same logic. However, instead of
storing the instances in string form in the testing suite, the instances used for testing were stored
in text files to be read in, which tests more components of the system at once.

In total, there are 36 JUnit tests distributed across four test suites, testing, for example, that the
API responds correctly to requests and that the matchings returned by the API for some sample
instances and algorithms are of the correct form and contain the correct content.

Stability Testing The stability checker mentioned in the implementation was used to verify
the outputs of the student- and lecturer-oriented algorithms. This was temporarily done in the
SpringModel before returning the web request, and later using automated tests.

Using the automated tests, the student- and lecturer-oriented algorithms were used to solve over
5,000 randomly generated instances, each with 250 students, 350 projects, 50 lecturers, and total
project and lecturer capacities of 500 and 350, respectively. The stability results were recorded in
a file and exploratory data analysis confirmed that both algorithms produced only stable results
for these instances.

Integration Testing Basic integration tests to verify the user interface changes and that the
deployment was successful were performed manually by testing every change against a set of
tasks and instances for each problem class. Some of these yielded issues with edge cases that were
not detected previously by the compiler and JUnit tests.

Table A.1 shows an overview over the set of test cases with aims, tasks, expected outputs, and
whether the tests pass.

At the end of development, there were no outstanding issues detected by any of these methods.

6.2 Empirical Evaluation
The SPA algorithms were evaluated empirically against a set of generated instances with varying
parameters. This was done on the TULAI Linux server in the school with an Intel i7 quad-core
processor and 32GB of RAM through a remote SSH connection. Using Maven, the results were
generated by directly accessing the SpringModel logic without going through the web endpoints,
stored in comma-separated value files, and analysed using Python.

For all experiments, the instance sizes are parametrised by a factor 𝑥 ∈ ℕ so that in each instance,
there are 5𝑥 students, 7𝑥 projects, and 𝑥 lecturers, and the total project and lecturer capacities are
10𝑥 and 7𝑥 , respectively. Also, none of the instances allow ties.

29

Varying the Instance Size The first experiment investigates how the matching sizes, costs, and
computation times vary across the algorithms as the instance size grows. For this, 300 random
instances of varying sizes with 1 ≤ 𝑥 ≤ 300 with one repetition per size were generated. The
student preference list lengths vary randomly between 4 and 6, and student and project skewness
factors are set to 5.

(a) Total Student Cost (b) Average Student Cost

Figure 6.1: Student Costs as the Instance Size Varies

Algorithm Cost
Cost-Optimal 1.44
Generous 1.48
Greedy 1.50
Stable (Lecturer Optimal) 1.73
Stable (Student Optimal) 1.73

Table 6.1: Average Student Cost by Algorithm

As expected, Figure 6.1a shows that the total student cost increases as the instance size increases.
However, Figure 6.1b shows that the average student cost remains roughly equal across the
sizes, with some variance introduced by the fact that there is only one repetition per size. It
is interesting to see, however, that there is a clear pattern in the hierarchy of algorithms, with
the cost-optimal naturally yielding the lowest average student cost and the stable algorithms
yielding the highest average student cost. Table 6.1 summarises the average student costs across
all sizes for each algorithm and confirms this observation. The Generous and Greedy algorithms
are placed between the Cost-Optimal and Stable, in this order. It is interesting to see that the
average student costs are the same for both stable algorithms, which is probably due to the
fact that 74.19% of the considered instances have a unique stable matching, as the student- and
lecturer-oriented algorithms returned the same matching. Figure 6.2 shows that, in general, for
the stable algorithms, the total lecturer cost is significantly larger than the total student cost and
becomes bigger by orders of magnitude as the instance size increases.

Table 6.2 shows that for all of the selected sizes, the one-sided algorithms produce matchings
where all students are matched, whereas the stable algorithms produce matchings where, on
average, around 97% of students are matched.

Figure 6.3 shows that the computation times of the stable algorithms are negligible compared
to the one-sided algorithms. This was expected given the theoretical linear and quadratic
computational efficiency bounds, respectively.

Varying the Student Preference List Lengths The following experiment investigates how the
matching sizes and costs vary across the algorithms as the student preference list lengths increase.

30

Figure 6.2: Costs as the Instance Size Varies for the Student-Optimal Stable Algorithm

Parameter X 1 50 100 150 200 250 300
Students 5 250 500 750 1000 1250 1500
Matching Size (Stable) 5 245 474 738 973 1215 1435
Matching Size (One-Sided) 5 250 500 750 1000 1250 1500

Table 6.2: Matching Sizes against Instance Sizes

Figure 6.3: Computation Times as the Instance Size Varies

For this, for each 𝑥 ∈ {50, 100}, 350 random instances of varying list lengths parametrised by
a factor 𝑖 ∈ ℕ with 1 ≤ 𝑖 ≤ 350 with one repetition were generated. The student and project
skewness factors are set to 5.

Figure 6.4a shows the results for 𝑥 = 50 and that for both the one-sided and the stable matchings,
the size generally increases as the list length increases. However, for the one-sided algorithms, all
students are matched from 𝑖 = 3, while the size produced by the stable algorithms converges to
the number of students at around 𝑖 = 15. This was expected as stability is more restrictive than
cost-optimality, for example.

Regarding average student costs, Figure 6.4b shows that the stable algorithms lie closely together
and the one-sided algorithms lie closely together, with the stable algorithms having significantly
higher average student costs. This makes sense, as the one-sided algorithms optimise precisely
for student cost and student profile while disregarding lecturer costs. Exploratory data analysis
confirmed that the lecturer costs are significantly higher in matchings produced by the one-sided
algorithms than by the stable algorithms. Finally, the plot also shows a trend of increasing average

31

(a) Matching Sizes (b) Average Student Costs

Figure 6.4: Sizes and Costs as the Student Preference List Length Varies for x=50

student cost as 𝑖 increases until around 𝑖 = 7. This is due to the fact that the average cost is
equivalent to the average profile position, and for 𝑖 = 2, for example, the profile is restricted to
{1, 2} by definition, thereby skewing the average cost to smaller values. Similar results were
found for 𝑥 = 100.

Varying the Agent Popularity The last experiment investigates how the matching sizes vary
across the algorithms as the agent popularity increase. For this, initially, for each 𝑥 ∈ {50, 100},
there were 50 random instances generated with student skewness factor 𝑠 ∈ ℕ varying between
1 and 50, 50 random instances with project skewness factor 𝑠 varying between 1 and 50, and 50
random instances with bot student and project skewness factor 𝑠 varying between 1 and 50. The
student preference list lengths vary randomly between 4 and 6.

Exploratory data analysis suggested that the matching sizes of the one-sided algorithms do not
vary as the agent popularity varies, with all students matched. However, there was a high variance
in the stable matching sizes with inconclusive trends. It was determined that varying both the
student and project popularity is not as insightful as varying them individually. Therefore, the
experiment was rerun with 50 repetitions for each of the 200 experiment settings, generating
10.000 random instances in total. The sizes were then averaged out over each of the 50 repetitions
for each setting.

(a) x=50 (b) x=100

Figure 6.5: Stable Matching Sizes as the Popularity Varies

Figure 6.5 shows the results of this experiment. Similar trends can be seen for both values of 𝑥 - as

32

the project skewness factor increases, the matching size decreases on average and starts to stabilise
around 𝑠 = 35, and as the student skewness factor increases, there is a slight linear-like decrease in
the matching size, although not as strong as when varying the project skewness. This makes sense,
as the student preference lists are restricted to only 4-6 projects, so that they become a strong
restriction as the project popularity increases, while the lecturers find all students acceptable that
find at least one of their projects acceptable, thereby having much longer preference lists, on
average.

6.3 User Study
To evaluate the changes to the system and get feedback on the general usability and future
improvements from potential users of the web application, a user study was designed.

Study Design The study was conducted remotely to increase the participation of researchers
that might otherwise have been inaccessible. Overall, the study was designed for people at every
academic stage and people were asked to rate their experience level with matching algorithms
and their academic level. The ethics checklist was followed and users were briefed and debriefed
appropriately.

There was an information sheet covering the basics of the Toolkit and the SPA problem class
and an interactive questionnaire that gave the users simple structured tasks to complete such as
generating and uploading instances, running different algorithms, and comparing and saving
the results (see Appendix). Along the way, the users were asked to answer questions on the
tasks, for example, whether they can see the results and what cost a specific algorithm achieves.
Afterwards, the users were asked to rate multiple usability-related questions on a Likert scale,
to provide feedback on the appropriateness of the application for their research (if applicable),
and to give open-ended answers on what they liked most about the system or their interaction
and what could be improved to enhance the usability or feature set of the system. Some of the
usability-related questions are phrased the same as in the user study conducted on an earlier
version of the system by Lazarov (2018) to compare the results.

Findings The study had 15 participants. Figure 6.6 shows that the users had varying levels of
knowledge with regards to matching algorithms and different academic positions. Table 6.3
presents the average responses to Likert-scale questions, rated between strongly disagree (one)
and strongly agree (five).

Figure 6.6: Participant Background

All users were able to upload an instance using the text box, generate stable matchings, and
identify the size and cost of the matchings and that the student and lecturer optimal algorithms

33

Question Median Mean
The navigation to the previous selection tabs was intuitive. Strongly Agree 4.40
The input fields were working well and the input types appropriate. Strongly Agree 4.67
The instance saving worked smoothly. Strongly Agree 4.93
The instance uploading worked smoothly. Strongly Agree 5.00
The saving process worked smoothly. Strongly Agree 4.86
The results in the downloaded file show what I expected them to show. Strongly Agree 4.71
The application was easy to navigate. Strongly Agree 4.93
Extracting information from the results was easy. Strongly Agree 4.53
Overall, the tasks were easy to complete. Strongly Agree 4.60

Table 6.3: User Responses to Likert-scale Questions

give the same matching. This required varying interactions with the results, switching tabs, and
opening drop-downs.

For the random instance generator, the participants agreed or strongly agreed that the input
fields and types are appropriate and working well. However, there were varying opinions on the
intuitiveness of the navigation between program steps, although the majority strongly agrees
with it being intuitive. Overall, the answers are very split when asked whether the greedy or
the generous matching has a higher number of first and second choices fulfilled for the students.
Purely theoretically, the greedy matching must have at least as many if the profile has at least
two positions. Therefore, the results here indicate either that the number was equal which was
not an answer option, or that the profile was interpreted incorrectly by many users.

When dealing with input from files, most or all participants strongly agreed that the instance
saving and uploading and the results saving features worked smoothly. However, one user did
not agree that the downloaded results show what they expected to see. Only four participants
stated that they conduct or have conducted any research related to matchings. All of them would
consider using the Toolkit for their research and none suggested improvements or features for
the Toolkit to become a better tool for them.

Regarding usability, on average, the participants strongly agreed that the application was easy
to navigate, agreed that extracting information from the results was easy, and strongly agreed
that the tasks were easy to complete. Some recommendations and ideas derived from the open-
ended answers on improving the system are to improve the preview of the sliders in the random
generators to show the value while moving rather than after, to save the parameters rather than
instances, to explain the terms used in the Toolkit better, to explain why some algorithms are
hidden, and to show the preference lists in a more readable way.

These findings roughly match the study results from Lazarov (2018), with the participants here
agreeing slightly stronger on average with the statement that extracting information from the
results was easy. This could be either due to randomness or because of the adjustments made to
order the output and the textual output for the SPA matchings.

Resulting Changes As multiple comments suggested changing the preview of the slider values,
these were fixed to show the value on movement instead by adjusting the respective event handler.
Furthermore, the explanations in the manual were adjusted again to improve readability, and
finally, the changes to the preference list inputs mentioned in the implementation section were
completed after the study.

34

7 Conclusion

7.1 Achievements
Overall, this project successfully improved and extended the Toolkit, resulting in a more efficient
and user-friendly research and demonstration tool with greatly expanded capabilities. All require-
ments that were set out to be achieved are satisfied, including all nice to haves and amended nice
to haves, with the exception of a fully continuous integration procedure as explained.

Mainly, the existing system was improved by navigating the complex codebase and bringing
together different standalone versions of it in one unified and version-controlled system, the
fixing of bugs and inconsistencies introduced by past developers, and by increasing its usability
through additional user input features and more flexible input data handling, providing default
values and range indicators for the random instance generator, and improving and extending
the user manual. Furthermore, the system was extended to the SPA problem class which covers
a highly integrated user interface, five different algorithms that have been made available with
two solving for stability and three solving for profile-based optimality, the implementation of
an instance reader, random instance generator, and instance, matched instance, matching, and
matching statistics writers.

The functionality of the system was tested through automated and manual tests on random
instances and edge cases, and the stability of the matchings was checked using a newly imple-
mented stability checker. Extensive empirical analyses have been conducted with the five SPA
algorithms, varying different parameters such as the instance sizes, student preference list lengths,
and agent popularity, leading to insights into how these parameters and algorithm choices affect
the matching sizes, agent costs, and computation times. Finally, by gathering feedback on the
system through a user study involving 15 participants with varying levels of expertise on matching
problems, the usability of the system was evaluated and concluded to be excellent. Furthermore,
some suggestions for improvement were gathered, some of which were addressed during the
remaining project duration.

7.2 Reflection
This project was a personal and technical challenge, but I greatly enjoyed the journey and am
very happy with the achievements and final product. It was an opportunity to apply and improve
many research techniques and software engineering skills learned throughout my studies and
work experience to a complex system with a long history, lots of legacy code, and a real user
base. Here, I got the chance to merge the work of many different researchers and contributors
into a coherent solution that can be used by scientists and practitioners alike. While diving deep
into the topic of matching under preferences, I learned more about algorithmics and complexity
and developed and collected many research ideas that I would like to pursue in the future.

Given the large existing codebase and fragmented legacy projects, naturally, I was required to
spend a long time reading up on the projects and theoretical foundations of the work before
starting any new modifications. If I were to do this project again, I would spend more time
planning the long-term goals for the system before starting the implementation, and therefore

35

prioritising the simplification of the system’s implementation. It would have also been nice to
have more time to include more variants of SPA such as lower-quotas, and stable algorithms for
SPA-ST.

Overall, I am happy to know that the Toolkit will remain in use and that my changes are a
valuable addition for researchers and other users, as evidenced by the user study.

7.3 Future work
Both on the practical and theoretical sides, there remain many extensions and topics worthy of
future investigation and implementation related to the Toolkit and the SPA problem.

In terms of extending and ameliorating the Toolkit, it would be great to reduce the overall
complexity of the codebase that has accrued over the many projects and contributors. By cutting
legacy features and re-implementing major parts of the system, it would be easier to extend
and more flexible for future features. Regarding usability, it would be good to let users input
different file formats and to be more flexible overall with the input, as well as provide better error
handling and error communication. By improving the implementation performance through
more efficient code and architecture, larger instances could be solved without exceeding the
timeout thresholds. On the algorithmic side, there are still many matching algorithms that could
be implemented and integrated into the Toolkit. For example, the more efficient greedy and
generous maximum matchings for SPA with one-sided preferences by Kwanashie et al. (2015), or
the weakly stable matching approximation algorithm (Cooper and Manlove 2018) and the strong
and super-stable polynomial time algorithms (Olaosebikan and Manlove 2018) for SPA-ST. Also,
the SPA-P problem is not integrated at all yet and would need significant implementation work
and possibly a slight redesign of the overall software architecture.

Theoretically, it would be interesting to extend the work on profile-based optimal matchings by
Kwanashie et al. (2015) to combined profiles of students and lecturers to incorporate two-sided
preferences. It would also be a nice achievement to speed up the flow computations through more
efficient of parallel computations (Beraldi et al. 1997) as the empirical evaluation’s computation
times have shown. On a different note, one could develop a stable matching algorithm for lower
quotas on projects and lecturers with or without closure as mentioned in the background section,
and investigate this problem’s complexity. Finally, it would be interesting to investigate how
robust the stable matchings are by studying temporal preferences that change over time, similar
to Gangam et al. (2022).

36

A Appendices

A.1 Application Screenshots
Figures A.1 - A.7 are screenshots taken when navigating the SPA problem class in the Toolkit.

Figure A.1: Problem Class Selection

Figure A.2: Input Type Selection

37

Figure A.3: Parameter Selection

Figure A.4: Text-Box Input

Figure A.5: Algorithm Selection

38

Figure A.6: Results

Figure A.7: User Manual

39

A.2 Setup and Quickstart Instructions
A.2.1 Folder Structure

In the source code, the matwa/ folder contains everything related to the Django front-end
application and the matws/ folder contains everything related to the Spring Boot back-end
application.

A.2.2 Requirements and Installation

To set up the MATWA front-end,

1. Install Python 2.7 and a suitable version of pip,
2. Install Django 1.11.9,
3. To install required Python packages, run pip install -r matwa/requirements.txt.

To set up the MATWS back-end,

1. Install Java JDK version 1.8,
2. Install a suitable Maven version, e.g. 3.6.0,
3. Additional project dependencies will be handled automatically by Maven.

A.2.3 Setup

First, adjust the matwsAddress variable in matwa/static/matchingApp.js to the IP of your local
machine with port 9115, i.e. IP:9115. Then set DEBUG to True in matwa/matwa/settings.py to
activate developer mode.

A.2.4 Usage

To start the front-end developer server, in the matwa/ folder, run python manage.py runserver
IP:8008 with IP replaced by the IP of your local machine. This starts the server on locally on
port 8008.

To compile the back-end, in the matws/ folder, run mvn clean package. To start the back-end
developer server locally, in the matws/target folder, run java -jar FILE with FILE replaced by
the name of the newly created .jar file in the same folder.

The front- and back-end should now be able to communicate and you should be able to make
full use of the web application functionality in your local browser using the IP:8008 URL, with
IP replaced by the IP of your local machine.

A.2.5 Features and Manual

Features and instructions on how to use them can now be found on IP:8008/matching/manual
URL, with IP replaced by the IP of your local machine.

A.2.6 Testing

To run the JUnit test suites, in the matws/ folder, run mvn test.

40

A.3 Adding New Algorithms
To add a new algorithm implementation to an existing problem class, there are generally no
front-end changes required.

In the back-end, place any legacy code in the folder legacy/, create a solver class in
impl/solver/algorithms/PROBLEMCLASS/ and add the solver class to the respective factory in
the same folder and its model in api/solver/PROBLEMCLASSFactory. Then in the SpringModel,
add the new algorithm to the respective AlgTooltips HashMap and PROBLEMCLASSalg array, add
respective logic to the executeAlgs method to generate a solver object, and finally add respective
logic to the disableUnsuitableAlgs method to disable the new algorithm for unsuitable instances.

41

A.4 General Contribution Guidance
Getting Access to the Project The current way to get access is to contact Professor David
Manlove directly, as he manages the GitLab repository. An alternative way is to download the
codebase directly from the live server if access is granted.

Contributing on Git Even if there is just one developer, software engineering best practices
should be followed so that future contributors can track and verify previous changes. Therefore,
when changing the codebase, a new branch should be checked out with a short name describing
the changes. Commits should be created after every implemented feature or significant fix,
and merge requests raised with descriptions of the changes after a coherent new feature set is
implemented.

Updating the Live Server The easiest way is to use an integrated development environment
(IDE) that has an SSH extension such as VS Code. Then:

1. Access the University’s internal network, either through physical presence or a VPN
connection.

2. Access the School of Computing Science network, either through physical presence or a
VPN connection (username@sibu.dcs.gla.ac.uk).

3. Set up an SSH connection to the mithril server’s virtual machine (username@mithril) on
Port 8023, ideally directly in the IDE.

4. Direct to directory /opt/boris (e.g. using cd /opt/boris).
5. Check whether the services boris-matwa and boris-matws are running (e.g. using systemctl

list-units –type=service).
6. Stop the services from running (e.g. using sudo systemctl stop SERVICENAME).
7. Update the relevant files. If there are permission issues, give yourself rights to the relevant

files (e.g. using sudo chown -R $USER /opt/boris/matws/ and similarly for matwa).
8. Start the services again (e.g. using systemctl start SERVICENAME) and check that they are

actually running.
9. Ask an admin of the mithril machine to run the following commands outside of the virtual

machine:
(a) rsync -avr matwa:/opt/boris/matwa/static ∼/
(b) sudo rsync -avr ∼/static /opt/www/matwa/public

42

A.5 Test Cases

Aim Description Expected Output Passes
1 Check live server Open

matwa.optimalmatching.com
Problem class selection panel Yes

2 Check HA runs successfully Select HA class, select au-
tomatic instance generation,
leave defaults or enter 1 into
number fields, select all algo-
rithms

Results panel for multiple algo-
rithms

Yes

3 Check HR runs successfully Select HR class, select au-
tomatic instance generation,
leave defaults or enter 1 into
number fields, select all algo-
rithms

Results panel for multiple algo-
rithms

Yes

4 Check SR runs successfully Select SR class, select au-
tomatic instance generation,
leave defaults or enter 1 into
number fields, select all algo-
rithms

Results panel for multiple algo-
rithms

Yes

5 Check SPA runs successfully Select SPA class, select au-
tomatic instance generation,
leave defaults or enter 1 into
number fields, select all algo-
rithms

Results panel for multiple algo-
rithms

Yes

6 Check text box input Generate a random SPA in-
stance, save the instance, paste
the instance into the text box

Results panel for multiple algo-
rithms

Yes

7 Check file input Generate a random SPA in-
stance, save the instance, up-
load the instance

Algorithm selection panel Yes

8 Check instance saving Generate a random SPA in-
stance, save the instance, in-
spect whether the file

Plausible instance file Yes

9 Check result saving Generate a random SPA
instance, select one algo-
rithm, save the results, inspect
whether the file

Results from web app Yes

10 Verify User Manual Open the web app and click on
User Guide

User guide Yes

Table A.1: Manual Integration Test Cases

43

A.6 Code Contributions
This project improved and extended many front- and back-end features. Therefore, changes
were made all over the codebase. The GitLab stats state more than

1. 35 commits and
2. 256 (not-necessarily unique) file changes in these commits.

It is difficult to accurately state all contributions to the codebase, as some changes were introduc-
ing new functionality, some were improving or correcting old ones, and some were deleting
unnecessary code altogether. A full history of changes can be found in the respective GitLab
repository, https://git.dcs.gla.ac.uk/Matchings-group/wa-toolkit.

A.6.1 Core Front-End Changes

Here, I will mention some files to which I have done major changes to implement the new
functionality mentioned above and in the dissertation:

1. matwa/matching_app/urls.py: added SPA form URL pattern

2. matwa/matching_app/views.py: added SPA form request handler

3. matwa/static/css/...: put correct scripts that were removed in a previous version and minor CSS adjust-
ments

4. matwa/static/js/AppClass.js: SPA parameter validation and instance stats generation

5. matwa/static/js/matchingApp.js: major changes to integrate SPA, slider values, text-box input, input
regex...

6. matwa/static/favicon.ico: designed and added favicon for website

7. matwa/templates/matching_app/...Params.html: changed default values, input types and guidance
for all problem classes, newly designed and implemented parameter form for SPA

8. matwa/templates/matching_app/index.html: improved usability, added SPA problem class, text-box
input, and input features

9. matwa/templates/matching_app/manual.html: improved usability, rephrased many sections, updated
information

A.6.2 Core Back-End Changes

Here, I will also mention some files to which I have done changes to implement the new
functionality mentioned above and in the dissertation:
WebService:

1. matws/src/main/java/WebService/AlgorithmRunner.java: added SPA problem class handling

2. matws/src/main/java/WebService/FileCheck.java: added SPA problem class handling

3. matws/src/main/java/WebService/ParameterCheck.java: added SPA problem class handling

Logic:

1. matws/src/main/java/Logic/SpringModel.java: here, the biggest changes were needed as the core
functionality and program flow handling happens here. SPA handling for all API endpoints, orchestration of
solvers, writers, readers, models, etc...

Models API:

1. matws/src/main/java/api/model/Agent.java: adjustments to make Suyi Yang’s changes compatible

2. matws/src/main/java/api/model/ModelSPA.java: implementation of one-sided interface features

3. matws/src/main/java/api/model/PreferenceList.java: adjustments to make Suyi Yang’s changes
compatible

Solvers API:

https://git.dcs.gla.ac.uk/Matchings-group/wa-toolkit

44

1. matws/src/main/java/api/solver/HRFactory.java: adjustments to make Suyi Yang’s changes com-
patible

2. matws/src/main/java/api/solver/SPAAlgorithmType.java: new enum to differentiate between
one-sided algorithms

3. matws/src/main/java/api/solver/SPAFactory.java: made SPA solvers available in factory class

Writers API:

1. matws/src/main/java/api/writer/statsaccumulator/StatsAccumulatorFactory.java:
added SPA problem class handling

Random Instance Generators:

1. matws/src/main/java/generator/impl/DefaultGeneratorFactory.java: made SPA random
instance generator available in factory

2. matws/src/main/java/generator/impl/GeneratorHRnew.java: made file more readable to adapt
for SPA

3. matws/src/main/java/generator/impl/GeneratorSPAnew.java: implemented SPA random in-
stance generator for one- and two-sided instances

4. matws/src/main/java/generator/impl/InstanceParameterSPA.java: instance parameter spec-
ification and
builder for SPA problem class

Models:

1. matws/src/main/java/impl/model/network/mcmf/...: added legacy code for flow algorithms

2. matws/src/main/java/impl/model/AgentImpl.java: adjustments to make Suyi Yang’s changes com-
patible

3. matws/src/main/java/impl/model/ModelSPAImpl.java: implementation of SPA model, mainly ex-
tended to one-sided model, adjusted checkModel and makeConsistent methods

4. matws/src/main/java/impl/model/PrefListImpl.java: adjustments to make Suyi Yang’s changes
compatible

Readers:

1. matws/src/main/java/impl/reader/AbstractStandardReaderLogic.java: fixed bug to allow
instances with or without IDs for all problem classes - ‘matws/src/main/java/impl/reader/StandardReaderHA.java‘:
adjusted to allow instances with or without IDs

2. matws/src/main/java/impl/reader/StandardReaderHR.java: adjusted to allow instances with or
without IDs

3. matws/src/main/java/impl/reader/StandardReaderSPA.java: reader logic implementation for
SPA

Solvers:

1. matws/src/main/java/impl/solver/algorithms/ha/...: adjustments for Suyi Yang’s project

2. matws/src/main/java/impl/solver/algorithms/hr/...: adjustments for Suyi Yang’s project

3. matws/src/main/java/impl/solver/algorithms/sm/...: adjustments for Suyi Yang’s project

4. matws/src/main/java/impl/solver/algorithms/spa/DefaultSPAFactory.java: made SPA
algorithms available in factory

5. matws/src/main/java/impl/solver/algorithms/spa/MinCostMaxFlowSPA.java: made one-
sided algorithms available

6. matws/src/main/java/impl/solver/algorithms/spa/SPAImpl.java: made student-oriented sta-
ble algorithm available

7. matws/src/main/java/impl/solver/algorithms/spa/SPALecImpl.java: made lecturer-oriented
stable algorithm available

8. matws/src/main/java/impl/solver/SolverImpl.java: added SPA problem class handling

Writers:

1. matws/src/main/java/impl/writer/instance/ ZhangInstanceWriterFactory.java: imple-
mented instance wrapper for lecturer-oriented stable algorithm

45

2. matws/src/main/java/impl/writer/instance/ZhangInstanceWriterSPA.java: implemented
instance wrapper for lecturer-oriented stable algorithm

3. matws/src/main/java/impl/writer/matchedinstance/
DefaultMatchedInstanceWriterFactory.java: added SPA problem class handling

4. matws/src/main/java/impl/writer/matchedinstance/
MatchedInstanceHTMLWriterHA.java: adjusted to allow instances with or without IDs

5. matws/src/main/java/impl/writer/matchedinstance/
MatchedInstanceHTMLWriterSPA.java: implemented matched instance writer for SPA HTML output

6. matws/src/main/java/impl/writer/matchedinstance/
MatchedInstanceWriterSPA.java: implemented matched instance writer for SPA output

7. matws/src/main/java/impl/writer/matching/GUIMatchingWriterFactory.java: added SPA
problem class handling

8. matws/src/main/java/impl/writer/matching/SPAHTMLMatchingStatsWriter.java: imple-
mented matching stats writer for SPA HTML output

9. matws/src/main/java/impl/writer/matching/SPAMatchingStatsWriter.java: implemented
matching stats writer for SPA output

10. matws/src/main/java/impl/writer/matching/SRHTMLMatchingStatsWriter.java: adjusted
to allow instances with or without IDs

11. matws/src/main/java/impl/writer/statsaccumulator/
StatsAccumulatorFactoryImpl.java: added SPA problem class handling

Legacy:

1. matws/src/main/java/legacy/zhang/... added lecturer-oriented stable algorithm legacy code for
SPA

Utilities:

1. matws/src/main/java/utilities/StabilityChecker.java implemented SPA stability checker class

2. matws/src/main/java/utilities/Util.java implemented cost and profile repairs for SPA

Resources:

1. matws/src/main/resources/instances/SPA/... added small one- and two-sided SPA instances in
text form for testing

Testing:

1. matws/src/test/java/SPAAlgorithmsTest.java implemented unit tests for all five algorithms

2. matws/src/test/java/SPAEmpiricalEvalTest.java implemented empirical test suite with random
instance generation and result saving - NOTE: keep commented out by default as runtime > 1 week

46

A.7 SPA Stable Algorithm Pseudo-Code
The pseudocodes in Figures A.8, A.9 are of the student- and lecturer-oriented SPA stable
algorithms, respectively, by Abraham et al. (2007).

Figure A.8: Pseudocode of Student-Oriented Stable Algorithm

Figure A.9: Pseudocode of Lecturer-Oriented Stable Algorithm

Student-Project Allocation Information Sheet to User Study

Frederik Glitzner (2478972g@student.gla.ac.uk)

Introduction

Student-Project Allocation (SPA) is an essential problem faced by schools and universities
all over the world, with hundreds of participants in the Honours project allocation at the
University of Glasgow alone. The model is also applicable to other contexts and can be
used, for example, in wireless network engineering. Therefore, it is important to design
fair, stable, and efficient algorithms that provide modular features, reasonable computation
times and transparency over the allocation.

Assigning students to projects can be as simple as a random allocation. When introducing
capacities on the project and supervising lecturers, the problem is referred to as SPA. As an
extension, students can have ordinal preferences over the projects (one-sided preferences),
and lecturers can have preferences over students (two-sided preferences).

The Matching Algorithm Toolkit (Toolkit) provides a web application allowing users to
generate instances (problem settings) randomly or input them manually, and solve them
using a range of state-of-the-art algorithms. Previously, the Toolkit only provided three
matching problem classes. In House Allocation, people with preferences over houses are
assigned to properties. In Hospitals Residents, junior doctors have preferences over hospital
jobs and hospitals have preferences over their applicants. Finally, in Stable Roommates,
every participant has preferences over the people they could live with. My contribution is
the integration of the SPA problem class, the success and usability of which I would like to
evaluate in this study.

Definitions and Optimality Criteria

SPA involves three sets of distinct agents: students, projects, and lecturers. Each project is
offered by a single lecturer, and the goal is to find an assignment of students to projects (i.e.
student-project pairs) so that every student is assigned to at most one project. Furthermore,
projects and lecturers have capacities indicating the maximum number of students that can
be assigned to it/them. Finally, students can provide a ranking list of projects, with the
first entry being their most favourite project and the last project being their least favourite
project. They can choose to rank as many projects as they would like to, with all non-rated
projects considered unacceptable. In the two-sided setting, each lecturer provides a similar
preference list and all students need to be considered acceptable. We may now consider
this to be an optimisation problem for maximising the size of the matching (the number
of students paired with a project) and for the participants to receive their most favourable
choices.

We will consider four optimality criteria:

• Stability: there are no unmatched agents that could be accommodated in the match-
ing, and no matched agents prefer each other over their current assignments.

• Cost-optimality: the overall sum of the ranks of assigned projects in the students’
preference lists is minimised.

• Greedy: the number of happy students is maximized.

• Generous: the number of unhappy students is minimised.

1

47

A.8 User Study Information Sheet

Instance Format

Now consider the two-sided instance in Figure 1. There are three students, Alice, Bob, and
Max, and two lecturers, each offering two projects. Every student finds two projects accept-
able. The first lecturer, Dr Prince, can supervise two students, and the second lecturer, Dr
Smith, can supervise one. Similarly, each project has an upper limit of students that can
be assigned to it. The instance can then be converted by assigning ordered IDs (Figure 2).

Student Preferences Lecturer Preferences Project Capacities
Alice: Prj 1 > Prj 2 Dr Prince: Alice>Bob>Max Prj 1: 1, Prj 2: 2
Bob: Prj 2 > Prj 3 Dr Smith: Bob>Alice>Max Prj 3: 2, Prj 4: 1
Max: Prj 1 > Prj 3 Lecturer Capacities Dr Prince: 2, Dr Smith: 1

Figure 1: Two-sided Instance with Names

Student Preferences Lecturer Preferences Project Capacities
1 : 1 2 1 : 1 2 3 1 : 1 2 : 2
2 : 2 3 2 : 2 1 3 3 : 2 4 : 1
3 : 1 3 Lecturer Capacities 1 : 2 2 : 1

Figure 2: Same two-sided Instance with IDs

A stable matching is then, for example, {(Alice, Project 1), (Bob, Project 2), (Max, Project
3)}, which can be represented using IDs by {(1, 1), (2, 2), (3, 3)}.
In general, the Toolkit uses IDs and the input format of a SPA-instance is shown in Figure
3 and the above instance given as an example in Figure 4.

NumStudents NumProjects NumLecturers
StudentId: Pref1 Pref2 (...)
StudentId: Pref1 Pref2 (...)
StudentId: Pref1 Pref2 (...)
LecturerId: LecturerCapacity: Pref1 Pref2 (...)
LecturerId: LecturerCapacity: Pref1 Pref2 (...)
ProjectId: ProjectCapacity: SuperviserId
ProjectId: ProjectCapacity: SuperviserId
ProjectId: ProjectCapacity: SuperviserId
ProjectId: ProjectCapacity: SuperviserId

Figure 3: SPA format in the Toolkit

3 4 2
1: 1 2
2: 2 3
3: 1 3
1: 2: 1 2 3
2: 1: 2 1 3
1: 1: 1
2: 2: 1
3: 2: 2
4: 1: 2

Figure 4: Above instance example

Now lets change the instance to be one-sided (no lecturer preferences) and having ties
(students 1 and 3 find their ranked projects equally good). The instance can be seen in
Figure 5.

3 4 2
1: (1 2)
2: 2 3
3: (1 3)
1: 2:
2: 1:
1: 1: 1
2: 2: 1
3: 2: 2
4: 1: 2

Figure 5: Modified instance with one-sided preferences and ties

2

48

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 1/7

Yes

No

Introduction
The Toolkit lets you generate, upload, and solve instances of matching problems. It can be
accessed publicly here:

matwa.optimalmatching.com

Note that the website is not mobile friendly and works best on a regular laptop or desktop
in full-screen mode.

If you do not know about matching, the SPA problem class, and instance formats, please
read the introduction here:

https://drive.google.com/file/d/1Q6BYHyOBcSe1dFJkEOEGE8GMwjkQnyE0/view

Note that even if you decide not to read the introduction sheet now, it may be useful to
keep open for future reference during the tasks.

Matching Algorithm Toolkit - Usability
Study
The aim of this experiment is to investigate the suitability of the developed extensions of
the Matching Algorithm Toolkit (Toolkit). We cannot tell how good web systems are
unless we ask those people who are likely to be using them, which is why we
need to run experiments like these. You can explore the page yourself first, then my
tasksheet will guide you through some features to use. After each activity, there will be
some questions for you to answer. Your answers will be stored in the Google Drive storage
associated with the form. Answers will be analysed anonymously and the results will be
used in my Level 4 Honours project dissertation, and potentially be published publicly.
Please ask any questions via email (2478972g@student.gla.ac.uk).

The whole study should take around 15 minutes to complete. Please remember that it is
the system, not you, that is being evaluated. You are welcome to withdraw from the
experiment at any time. If you do so, then it will not be possible for you to be debriefed about
the purposes of the experiment.

In Google anmelden, um den Fortschritt zu speichern. Weitere Informationen

* Erforderlich

Do you agree to taking part in this evaluation? *

49

A.9 User Study Task Sheet and Questionnaire

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 2/7

None

Limited

Intermediate

Advanced

Undergraduate Student

PGT Student

PGR Student

Research Assistant/Associate

Academic with Teaching Responsibilities

Other

Textbox Input
Open the Toolkit at matwa.optimalmatching.com and take a look around.

Then select the Student-Project Allocation Problem class.

Choose the Textbox Input and paste this instance inside:

3 4 2
1: 1 2
2: 2 3
3: 1 3
1: 2: 1 2 3
2: 1: 2 1 3
1: 1: 1
2: 2: 1
3: 2: 2
4: 1: 2

Get the executable algorithms and select all Stable algorithms.

Run the algorithms and inspect the results.

Yes

No

What is your current knowledge with regards to matching algorithms? *

What is your academic position? *

Are you able to see the stable results? *

50

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 3/7

4

5

6

9

2

3

4

5

Yes

No

Random Input
Go back to the Input Type selection for SPA and select Automatic generation this time.

Generate ONE one-sided instance with 30 students, 40 projects, and 10 lecturers, with a
total lecturer capacity of 40 a total project capacity of 50, and an even distribution of
positions.. The student preferences should be of lengths between 4 and 6, probability
of student ties 0.2, and the project skewness factor 5.

Get the executable algorithms and select all One-sided algorithms.

Run the algorithms and inspect the results.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Strongly Disagree

1 2 3 4 5

Strongly Agree

In the student optimal matching, what is the lecturer cost?

In the lecturer optimal matching, what is the size of the matching?

Do the student and lecturer optimal algorithms give the same matching?

The navigation back to the previous selection tabs was intuitive. *

The input fields were working well and the input types appropriate. *

51

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 4/7

Yes

No

Students

Lecturers

Greedy

Generous

Save the generated instance as a text file on your computer, using the button on the top
right.

File Input
Go back to the Input Type selection for SPA and select File Input this time.

Upload the text file you just saved in the previous step.

Get the executable algorithms and select the cost-optimal algorithm.

Run the algorithms and inspect the result.

Save the current results, using the button on the top right, and open the file in browser.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Strongly Disagree

1 2 3 4 5

Strongly Agree

Are you able to see the one-sided results? *

Which agent group has a smaller cost in the cost-optimal matching?

Compare the profiles of the greedy and the generous matchings. Which one has a
higher number of first and second choices fulfilled for the students?

The instance saving worked smoothly. *

The instance uploading worked smoothly.

52

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 5/7

Strongly Disagree

1 2 3 4 5

Strongly Agree

Strongly Disagree

1 2 3 4 5

Strongly Agree

Yes

No

Research Questions

Yes

No

Usability

Strongly Disagree

1 2 3 4 5

Strongly Agree

Strongly Disagree

1 2 3 4 5

Strongly Agree

The saving process worked smoothly.

The results in the downloaded file show what I expected them to show.

Do you conduct (or have you conducted) any research related to matchings? *

Would you consider using the Toolkit for your research? *

What improvements or features is the Toolkit missing to become a better tool for
your research?

Meine Antwort

The application was easy to navigate. *

Extracting information from the results was easy. *

53

03.03.23, 19:47 Matching Algorithm Toolkit - Usability Study

https://docs.google.com/forms/d/e/1FAIpQLSf00r3_rM4_HixNO1yfqZNIdkrX5bjZJe-gJUZ4n9wrF8S7yA/viewform 6/7

Strongly Disagree

1 2 3 4 5

Strongly Agree

Thank you
The main aim of the experiment was to investigate the usability of the Toolkit. I wanted to
know how easy the pages are to navigate and how easy it is to extract relevant information
from the results.

Please take a note of my email address (2478972g@student.gla.ac.uk), and let me know if
you have any further questions about this study. Thank you for your help!

Geben Sie niemals Passwörter über Google Formulare weiter.

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt. Missbrauch melden -
Nutzungsbedingungen - Datenschutzerklärung

Overall, the tasks were easy to complete. *

What did you like most about the system or your interaction with the system?

Meine Antwort

What could be improved to enhance the usability or feature set of the system?

Meine Antwort

Senden Alle Eingaben löschen

 Formulare

54

School of Computing Science
University of Glasgow

Ethics checklist form for 3rd/4th/5th year, and taught MSc projects

This form is only applicable for projects that use other people (‘participants’) for the collection of
information, typically in getting comments about a system or a system design, getting information about
how a system could be used, or evaluating a working system.

If no other people have been involved in the collection of information, then you do not need to
complete this form.

If your evaluation does not comply with any one or more of the points below, please contact the Chair of
the School of Computing Science Ethics Committee (matthew.chalmers@glasgow.ac.uk) for advice.

If your evaluation does comply with all the points below, please sign this form and submit it with your
project.

1. Participants were not exposed to any risks greater than those encountered in their normal working

life.
Investigators have a responsibility to protect participants from physical and mental harm
during the investigation. The risk of harm must be no greater than in ordinary life. Areas of
potential risk that require ethical approval include, but are not limited to, investigations that
occur outside usual laboratory areas, or that require participant mobility (e.g. walking,
running, use of public transport), unusual or repetitive activity or movement, that use sensory
deprivation (e.g. ear plugs or blindfolds), bright or flashing lights, loud or disorienting noises,
smell, taste, vibration, or force feedback

2. The experimental materials were paper-based, or comprised software running on standard hardware.

Participants should not be exposed to any risks associated with the use of non-standard
equipment: anything other than pen-and-paper, standard PCs, laptops, iPads, mobile phones
and common hand-held devices is considered non-standard.

3. All participants explicitly stated that they agreed to take part, and that their data could be used in the

project.
If the results of the evaluation are likely to be used beyond the term of the project (for
example, the software is to be deployed, or the data is to be published), then signed consent is
necessary. A separate consent form should be signed by each participant.

Otherwise, verbal consent is sufficient, and should be explicitly requested in the introductory
script.

4. No incentives were offered to the participants.

The payment of participants must not be used to induce them to risk harm beyond that which
they risk without payment in their normal lifestyle.

55

A.10 User Study Ethics Checklist

5. No information about the evaluation or materials was intentionally withheld from the participants.

Withholding information or misleading participants is unacceptable if participants are likely to
object or show unease when debriefed.

6. No participant was under the age of 16.

Parental consent is required for participants under the age of 16.

7. No participant has an impairment that may limit their understanding or communication.
Additional consent is required for participants with impairments.

8. Neither I nor my supervisor is in a position of authority or influence over any of the participants.

A position of authority or influence over any participant must not be allowed to pressurise
participants to take part in, or remain in, any experiment.

9. All participants were informed that they could withdraw at any time.

All participants have the right to withdraw at any time during the investigation. They should be
told this in the introductory script.

10. All participants have been informed of my contact details.

All participants must be able to contact the investigator after the investigation. They should be
given the details of both student and module co-ordinator or supervisor as part of the
debriefing.

11. The evaluation was discussed with all the participants at the end of the session, and all participants

had the opportunity to ask questions.
The student must provide the participants with sufficient information in the debriefing to
enable them to understand the nature of the investigation. In cases where remote participants
may withdraw from the experiment early and it is not possible to debrief them, the fact that
doing so will result in their not being debriefed should be mentioned in the introductory text.

12. All the data collected from the participants is stored in an anonymous form.

All participant data (hard-copy and soft-copy) should be stored securely, and in anonymous
form.

Project title ______STUDENT-PROJECT ALLOCATION IN
THE MATCHING ALGORITHM TOOLKIT

Student’s Name ____Frederik Glitzner_________________

Student Number ____2478972________________________

Student’s Signature ____Frederik Glitzner_________________

Supervisor’s Signature _

Date ____Feb 1, 2023_____________________

56

T
im

e
s
ta

m
p

D
o
 y

o
u
 a

g
re

e
 t

o

ta
k
in

g
 p

a
rt

 i
n
 t

h
is

e
v
a
lu

a
ti
o
n
?

W
h
a
t

is
 y

o
u
r

c
u
rr

e
n
t

k
n
o
w

le
d
g
e
 w

it
h

re
g
a
rd

s
 t

o
 m

a
tc

h
in

g
 a

lg
o
ri
th

m
s
?

W
h
a
t

is
 y

o
u
r

a
c
a
d
e
m

ic
 p

o
s
it
io

n
?

A
re

 y
o
u
 a

b
le

 t
o
 s

e
e

th
e
 s

ta
b
le

 r
e
s
u
lt
s
?

In
 t

h
e
 s

tu
d
e
n
t

o
p
ti
m

a
l
m

a
tc

h
in

g
,

w
h
a
t

is
 t

h
e
 l
e
c
tu

re
r

c
o
s
t?

2
/1

1
/2

0
2
3
 1

2
:4

9
:0

4
Y

e
s

L
im

it
e
d

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

2
/1

6
/2

0
2
3
 1

5
:3

1
:5

0
Y

e
s

In
te

rm
e
d
ia

te
U

n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

2
/1

7
/2

0
2
3
 9

:2
3
:0

7
Y

e
s

L
im

it
e
d

P
G

R
 S

tu
d
e
n
t

Y
e
s

5

2
/1

7
/2

0
2
3
 1

1
:4

9
:3

0
Y

e
s

L
im

it
e
d

R
e
s
e
a
rc

h
 A

s
s
is

ta
n
t/

A
s
s
o
c
ia

te
Y

e
s

5

2
/1

7
/2

0
2
3
 1

3
:0

5
:2

7
Y

e
s

A
d
v
a
n
c
e
d

P
G

R
 S

tu
d
e
n
t

Y
e
s

5

2
/2

0
/2

0
2
3
 1

1
:3

4
:4

9
Y

e
s

A
d
v
a
n
c
e
d

P
G

R
 S

tu
d
e
n
t

Y
e
s

5

2
/2

6
/2

0
2
3
 1

1
:0

4
:0

9
Y

e
s

N
o
n
e

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

2
/2

8
/2

0
2
3
 1

3
:1

2
:3

3
Y

e
s

In
te

rm
e
d
ia

te
U

n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

3
/1

/2
0
2
3
 1

7
:0

4
:1

1
Y

e
s

L
im

it
e
d

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

3
/3

/2
0
2
3
 9

:4
0
:2

9
Y

e
s

N
o
n
e

P
G

T
 S

tu
d
e
n
t

Y
e
s

5

3
/3

/2
0
2
3
 1

7
:3

5
:5

5
Y

e
s

L
im

it
e
d

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

3
/6

/2
0
2
3
 1

3
:4

6
:0

4
Y

e
s

In
te

rm
e
d
ia

te
P

G
R

 S
tu

d
e
n
t

Y
e
s

5

3
/7

/2
0
2
3
 2

1
:3

1
:5

5
Y

e
s

L
im

it
e
d

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

3
/1

3
/2

0
2
3
 1

7
:5

5
:0

2
Y

e
s

N
o
n
e

U
n
d
e
rg

ra
d
u
a
te

 S
tu

d
e
n
t

Y
e
s

5

3
/1

3
/2

0
2
3
 1

8
:3

1
:0

0
Y

e
s

N
o
n
e

P
G

T
 S

tu
d
e
n
t

Y
e
s

57

A.11 User Study Responses

In
 t

h
e
 l
e
c
tu

re
r

o
p
ti
m

a
l
m

a
tc

h
in

g
,

w
h
a
t

is
 t

h
e
 s

iz
e
 o

f
th

e
 m

a
tc

h
in

g
?

D
o
 t

h
e
 s

tu
d
e
n
t

a
n
d
 l
e
c
tu

re
r

o
p
ti
m

a
l

a
lg

o
ri
th

m
s
 g

iv
e
 t

h
e
 s

a
m

e
 m

a
tc

h
in

g
?

T
h
e
 n

a
v
ig

a
ti
o
n
 b

a
c
k
 t

o
 t

h
e
 p

re
v
io

u
s

s
e
le

c
ti
o
n
 t

a
b
s
 w

a
s
 i
n
tu

it
iv

e
.

T
h
e
 i
n
p
u
t

fi
e
ld

s
 w

e
re

 w
o
rk

in
g

w
e
ll

a
n
d
 t

h
e
 i
n
p
u
t

ty
p
e
s

a
p
p
ro

p
ri
a
te

.

A
re

 y
o
u
 a

b
le

 t
o
 s

e
e

th
e
 o

n
e
-s

id
e
d
 r

e
s
u
lt
s
?

3
Y

e
s

3
4

Y
e
s

3
Y

e
s

5
5

Y
e
s

3
Y

e
s

2
4

Y
e
s

3
Y

e
s

3
4

Y
e
s

3
Y

e
s

4
5

Y
e
s

3
Y

e
s

5
4

Y
e
s

3
Y

e
s

5
4

Y
e
s

3
Y

e
s

5
5

Y
e
s

3
Y

e
s

5
5

Y
e
s

3
Y

e
s

5
5

Y
e
s

3
Y

e
s

5
5

Y
e
s

3
Y

e
s

5
5

Y
e
s

Y
e
s

4
5

Y
e
s

3
Y

e
s

5
5

Y
e
s

5
5

Y
e
s

58

W
h
ic

h
 a

g
e
n
t

g
ro

u
p
 h

a
s

a
 s

m
a
lle

r
c
o
s
t

in
 t

h
e

c
o
s
t-

o
p
ti
m

a
l
m

a
tc

h
in

g
?

C
o
m

p
a
re

 t
h
e
 p

ro
fi
le

s
 o

f
th

e
 g

re
e
d
y
 a

n
d
 t

h
e

g
e
n
e
ro

u
s
 m

a
tc

h
in

g
s
.

W
h
ic

h
 o

n
e
 h

a
s
 a

 h
ig

h
e
r

n
u
m

b
e
r

o
f

fi
rs

t
a
n
d
 s

e
c
o
n
d
 c

h
o
ic

e
s
 f

u
lf
ill

e
d
 f

o
r

th
e

s
tu

d
e
n
ts

?

T
h
e
 i
n
s
ta

n
c
e

s
a
v
in

g
 w

o
rk

e
d

s
m

o
o
th

ly
.

T
h
e
 i
n
s
ta

n
c
e

u
p
lo

a
d
in

g
 w

o
rk

e
d

s
m

o
o
th

ly
.

T
h
e
 s

a
v
in

g

p
ro

c
e
s
s

w
o
rk

e
d

s
m

o
o
th

ly
.

T
h
e
 r

e
s
u
lt
s
 i
n
 t

h
e

d
o
w

n
lo

a
d
e
d
 f

ile
 s

h
o
w

 w
h
a
t

I

e
x
p
e
c
te

d
 t

h
e
m

 t
o
 s

h
o
w

.

D
o
 y

o
u
 c

o
n
d
u
c
t

(o
r

h
a
v
e

y
o
u
 c

o
n
d
u
c
te

d
)

a
n
y

re
s
e
a
rc

h
 r

e
la

te
d
 t

o

m
a
tc

h
in

g
s
?

5
5

5
5

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

N
o

S
tu

d
e
n
ts

G
e
n
e
ro

u
s

4
5

4
5

N
o

S
tu

d
e
n
ts

5
5

4
2

Y
e
s

G
e
n
e
ro

u
s

5
5

5
5

Y
e
s

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

Y
e
s

L
e
c
tu

re
rs

G
e
n
e
ro

u
s

5
5

5
5

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

N
o

G
e
n
e
ro

u
s

5
5

5
5

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
4

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

Y
e
s

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

N
o

S
tu

d
e
n
ts

G
re

e
d
y

5
5

5
5

N
o

5
N

o

59

W
o
u
ld

 y
o
u
 c

o
n
s
id

e
r

u
s
in

g
 t

h
e
 T

o
o
lk

it
 f

o
r

y
o
u
r

re
s
e
a
rc

h
?

W
h
a
t

im
p
ro

v
e
m

e
n
ts

 o
r

fe
a
tu

re
s
 i
s

th
e
 T

o
o
lk

it
 m

is
s
in

g
 t

o
 b

e
c
o
m

e
 a

b
e
tt

e
r

to
o
l
fo

r
y
o
u
r

re
s
e
a
rc

h
?

T
h
e

a
p
p
lic

a
ti
o
n

w
a
s
 e

a
s
y
 t

o

n
a
v
ig

a
te

.

E
x
tr

a
c
ti
n
g

in
fo

rm
a
ti
o
n
 f

ro
m

 t
h
e

re
s
u
lt
s
 w

a
s
 e

a
s
y
.

O
v
e
ra

ll,
 t

h
e

ta
s
k
s
 w

e
re

 e
a
s
y

to
 c

o
m

p
le

te
.

W
h
a
t

d
id

 y
o
u
 l
ik

e
 m

o
s
t

a
b
o
u
t

th
e
 s

y
s
te

m
 o

r
y
o
u
r

in
te

ra
c
ti
o
n
 w

it
h
 t

h
e
 s

y
s
te

m
?

5
5

5

5
5

5
M

u
lt
ip

le
 a

lg
o
ri
th

m
s
 a

v
a
ila

b
le

4
5

5

T
h
e
 r

e
s
u
lt
s
 a

re
 c

le
a
rl
y
 s

h
o
w

n
,

a
n
d
 I

 r
e
a
lly

 l
ik

e
 t

h
e
 s

u
m

m
a
ry

 i
n
fo

rm
a
ti
o
n

p
ro

v
id

e
d
 a

b
o
u
t

th
e
 m

a
tc

h
in

g
 r

e
s
u
lt
s

Y
e
s

N
o
n
e
.

5
4

4

I
q
u
it
e
 l
ik

e
d
 t

h
e
 f

a
c
t

th
a
t

it
 w

a
s
 e

a
s
y
 t

o
 n

a
v
ig

a
te

.
A

n
d
 I

 q
u
it
e
 l
ik

e
d
 t

h
a
t

I
c
o
u
ld

g
e
n
e
ra

te
 i
n
s
ta

n
c
e
s
 e

a
s
ily

.
T

h
is

 f
e
a
tu

re
 w

ill
 b

e
 h

e
lp

fu
l
fo

r
m

y
 f

u
tu

re
 r

e
s
e
a
rc

h
.

Y
e
s

5
5

5

Y
e
s

5
4

4
E

a
s
e
 o

f
n
a
v
ig

a
ti
o
n
,

s
m

o
o
th

n
e
s
s

5
5

4
I

lik
e
 t

h
e
 n

ic
e
 U

I
a
n
d
 i
t

w
a
s
 q

u
it
e
 e

a
s
y
 t

o
 u

n
d
e
rs

ta
n
d
 w

h
a
t

w
a
s
 a

s
k
e
d
.

5
3

4
s
m

o
o
th

 a
n
im

a
ti
o
n
s

5
5

4
E

a
s
y
 t

o
 n

a
v
ig

a
te

 a
n
d
 u

n
d
e
rs

ta
n
d

5
4

5

T
h
e
 n

u
m

b
e
rs

 h
ig

h
lig

h
te

d
 i
n
 g

re
e
n
;

d
o
n
't
 n

e
e
d
 t

o
 r

e
lo

a
d
 p

a
g
e
 e

tc
.

to
 c

h
a
n
g
e

s
e
tt

in
g
s

5
4

5

Y
e
s

5
5

4
T

h
e
 p

a
rt

 o
f

a
u
to

g
e
n
e
ra

ti
n
g
 v

a
lu

e
s
 b

a
s
e
d
 o

n
 s

p
e
c
if
ic

 c
h
a
ra

c
te

ri
s
ti
c
s

5
4

5

T
h
e
 s

y
s
te

m
 i
s
 e

a
s
y
 t

o
 u

s
e
 a

s
 e

v
e
ry

th
in

g
 i
s
 d

iv
id

e
d
 i
n
to

 d
if
fe

re
n
t

s
te

p
s
.

It
 i
s

e
a
s
y
 t

o
 r

e
tu

rn
 t

o
 p

re
v
io

u
s
 s

te
p
s
 i
f

th
e
re

 i
s
 a

 n
e
e
d
 s

o
m

e
th

in
g
 t

o
 b

e
 c

h
a
n
g
e
d
.

If

th
e
 r

e
s
u
lt
s
 n

e
e
d
 t

o
 b

e
 s

a
v
e
d
 t

h
is

 i
s
 a

c
h
ie

v
e
d
 i
n
 a

 p
re

tt
y
 s

tr
a
ig

h
tf

o
rw

a
rd

 w
a
y
 a

s

th
e
re

 i
s
 a

 b
u
tt

o
n
 r

e
s
p
o
n
s
ib

le
 f

o
r

th
a
t.

5
5

5

5
5

5

60

W
h
a
t

c
o
u
ld

 b
e
 i
m

p
ro

v
e
d
 t

o
 e

n
h
a
n
c
e
 t

h
e
 u

s
a
b
ili

ty
 o

r
fe

a
tu

re
 s

e
t

o
f

th
e

s
y
s
te

m
?

E
a
s
ie

r
c
o
m

p
a
ri
s
o
n
 o

f
m

a
tc

h
in

g
s
 i
n
 r

e
s
u
lt
s

O
n
e
 t

h
in

g
 I

 d
id

n
't
 l
ik

e
 w

a
s
 t

h
e
 p

re
v
ie

w
s
 f

ro
m

 t
h
e
 s

lid
e
rs

 -
 i
t

d
o
e
s
n
't
 s

h
o
w

 t
h
e

v
a
lu

e
 I

 e
n
te

re
d
 u

n
ti
l
I

le
t

g
o
 o

f
th

e
 s

lid
e
r,

 w
h
ic

h
 w

a
s
 p

a
rt

ic
u
la

rl
y
 f

ru
s
tr

a
ti
n
g
 f

o
r

p
ro

b
a
b
ili

ty
 o

f
ti
e
s
,

s
in

c
e
 I

 h
a
d
 t

o
 e

s
ti
m

a
te

 w
h
e
re

 0
.2

 w
o
u
ld

 b
e
 o

n
 t

h
e
 s

lid
e
r!

S
h
o
w

in
g
 p

re
v
ie

w
s
 a

s
 I

 m
o
v
e
 t

h
e
 s

lid
e
r

w
o
u
ld

 b
e
 m

u
c
h
 b

e
tt

e
r.

A
ls

o
,

I
fo

u
n
d
 t

h
e
 d

if
fe

re
n
t

s
a
v
in

g
 o

p
ti
o
n
s
 t

o
 b

e
 a

 b
it
 u

n
c
le

a
r:

 U
n
ti
l
I

c
lic

k
e
d

"S
a
v
e
 I

n
s
ta

n
c
e
s
",

 I
 d

id
n
't
 k

n
o
w

 y
o
u
 c

o
u
ld

 s
a
v
e
 t

h
e
 m

a
tc

h
in

g
 r

e
s
u
lt
 a

s
 a

 .
tx

t

fi
le

 r
a
th

e
r

th
a
n
 a

n
 .

h
tm

l
fi
le

 r
e
p
o
rt

in
g
 t

h
e
 r

e
s
u
lt
s
.

A
n
o
th

e
r

m
in

o
r

th
in

g
:

W
h
e
n
 a

lg
o
ri
th

m
s
 a

re
 h

id
d
e
n
 f

ro
m

 m
e
,

I'
d
 l
ik

e
 t

o
 k

n
o
w

w
h
y
 I

 c
a
n
't
 u

s
e
 c

e
rt

a
in

 a
lg

o
ri
th

m
s
.

F
o
r

in
s
ta

n
c
e
,

w
h
y
 c

o
u
ld

n
't
 I

 u
s
e
 t

h
e

s
ta

b
le

 a
lg

o
ri
th

m
s
 w

it
h
 a

u
to

m
a
ti
c
 g

e
n
e
ra

ti
o
n
?

F
in

a
lly

,
w

h
e
n
 u

s
in

g
 a

u
to

m
a
ti
c
 g

e
n
e
ra

ti
o
n
,

I'
d
 l
ik

e
 t

h
e
 o

p
ti
o
n
 t

o
 s

a
v
e
 t

h
e

p
a
ra

m
e
te

rs
 t

o
 a

 f
ile

 t
h
e
n
 l
o
a
d
 t

h
e
m

 i
n
 a

g
a
in

 l
a
te

r.

I
d
o
n
't
 h

a
v
e
 a

n
y
 s

u
g
g
e
s
ti
o
n
s
.

P
le

a
s
e
 i
n
c
lu

d
e
 d

e
fi
n
it
io

n
s
 f

o
r

th
e
 t

e
rm

s
 u

s
e
d
 i
n
 t

h
e
 t

o
o
lk

it
.

T
h
e
 s

lid
e
r

in
p
u
t

in
 a

u
to

m
a
ti
c
 g

e
n
e
ra

ti
o
n
 c

o
u
ld

 s
h
o
w

 t
h
e
 c

h
o
s
e
n
 n

u
m

b
e
r

b
e
fo

re
 l
e
tt

in
g
 g

o
 o

f
th

e
 m

o
u
s
e
,

i.
e
.,

 d
y
n
a
m

ic
a
lly

 a
s
 y

o
u
 m

o
v
e
 t

h
e
 c

u
rs

o
r

ri
g
h
t

a
n
d
 l
e
ft

.
A

ls
o
,

th
e
 n

u
m

b
e
r

o
f

in
s
ta

n
c
e
s
 i
s
 t

o
o
 h

ig
h
 o

f
a
 r

a
n
g
e
 f

o
r

a
 s

lid
e
r:

 i
t

w
a
s
 h

a
rd

 t
o
 l
a
n
d
 o

n
 a

 n
u
m

b
e
r

I
w

a
n
te

d
.

th
e
 p

re
fe

re
n
c
e
 l
is

ts
 c

o
u
ld

 h
a
v
e
 b

e
e
n
 s

h
o
w

n
 i
n
 a

 m
o
re

 i
n
tu

it
iv

e
 a

n
d
 r

e
a
d
a
b
le

w
a
y

W
a
s
 n

o
t

o
b
v
io

u
s
 t

o
 m

e
 w

h
a
t

th
e
 c

o
s
t

(l
e
c
tu

re
r)

 w
a
s
.

I
a
s
s
u
m

e
 i
t

is
 c

o
s
t

(t
o
ta

l)
 -

 c
o
s
t

(s
tu

d
e
n
t)

,
b
u
t

I
w

a
s
 n

o
t

s
u
re

 s
o
 I

 l
e
ft

 i
t

b
la

n
k
.

(I
 g

o
t

c
o
s
t

(s
tu

d
e
n
t)

 =
 4

5
 =

 c
o
s
t

(t
o
ta

l)
.)

61

62

Bibliography

Abraham, D., Irving, R. and Manlove, D. (2007), ‘Two algorithms for the student-project
allocation problem’, Journal of Discrete Algorithms 5(1), 73–90.
URL: https://www.sciencedirect.com/science/article/pii/S1570866706000207

Anwar, A. A. and Bahaj, A. S. (2003), ‘Student project allocation using integer programming’,
IEEE Transactions on Education 46, 359–367.

Arulselvan, A., Ágnes Cseh, Groß, M., Manlove, D. and Matuschke, J. (2018), ‘Matchings with
lower quotas: Algorithms and complexity’, Algorithmica 80, 185–208.

Baidas, M. W., Bahbahani, Z. and Alsusa, E. (2019), ‘User association and channel assignment
in downlink multi-cell noma networks: A matching-theoretic approach’, EURASIP J. Wirel.
Commun. Netw. 2019(1), 1–21.
URL: https://doi.org/10.1186/s13638-019-1528-8

Beraldi, P., Guerriero, F. and Musmanno, R. (1997), ‘Efficient parallel algorithms for the minimum
cost flow problem’, Journal of Optimization Theory and Applications 95(3), 501–530.
URL: https://doi.org/10.1023/A:1022613603828

Biró, P., Fleiner, T., Irving, R. and Manlove, D. (2010), ‘The college admissions problem with
lower and common quotas’, Theoretical Computer Science 411(34), 3136–3153.
URL: https://www.sciencedirect.com/science/article/pii/S0304397510002860

Cooper, F. (2020), Fair and large stable matchings in the stable marriage and student-project
allocation problems, PhD thesis, University of Glasgow.

Cooper, F. and Manlove, D. (2018), A 3/2-approximation algorithm for the student-project
allocation problem, in G. D’Angelo, ed., ‘17th International Symposium on Experimental
Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Italy’, Vol. 103 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, pp. 8:1–8:13.
URL: https://doi.org/10.4230/LIPIcs.SEA.2018.8

Elviwani, E., Putera Utama Siahaan, A. and Fitriana, L. (2018), Performance-based stable match-
ing using gale-shapley algorithm, in ‘Proceedings of the Joint Workshop KO2PI and the 1st
International Conference on Advance & Scientific Innovation’, ICASI’18, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL,
p. 59–68.
URL: https://doi.org/10.4108/eai.23-4-2018.2277597

Ferris, J. and Hosseini, H. (2020), ‘Matchu: An interactive matching platform’, Proceedings of the
AAAI Conference on Artificial Intelligence 34(09), 13606–13607.
URL: https://ojs.aaai.org/index.php/AAAI/article/view/7090

Gale, D. and Shapley, L. S. (1962), ‘College admissions and the stability of marriage’, The American
Mathematical Monthly 69(1), 9–15.
URL: http://www.jstor.org/stable/2312726

63

Gangam, R. R., Mai, T., Raju, N. and Vazirani, V. V. (2022), A Structural and Algorithmic
Study of Stable Matching Lattices of "Nearby" Instances, with Applications, in A. Dawar and
V. Guruswami, eds, ‘42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2022)’, Vol. 250 of Leibniz International Proceedings
in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
pp. 19:1–19:20.
URL: https://drops.dagstuhl.de/opus/volltexte/2022/17411

Halim, S. (2011), ‘Visualgo’, https://visualgo.net/en/matching?slide=1. Accessed:
2023-03-18.

Hopcroft, J. E. and Karp, R. M. (1973), ‘An 𝑛5/2 algorithm for maximum matchings in bipartite
graphs’, SIAM J. Comput. 2, 225–231.

Irving, R. W., Kavitha, T., Mehlhorn, K., Michail, D. and Paluch, K. E. (2006), ‘Rank-maximal
matchings’, ACM Trans. Algorithms 2(4), 602–610.
URL: https://doi.org/10.1145/1198513.1198520

Kamiyama, N. (2013), ‘A note on the serial dictatorship with project closures’, Operations Research
Letters 41, 559–561.

Király, Z. (2013), ‘Linear time local approximation algorithm for maximum stable marriage’,
Algorithms 6(3), 471–484.
URL: https://www.mdpi.com/1999-4893/6/3/471

Kuhn, H. W. (1955), ‘The hungarian method for the assignment problem’, Naval Research Logistics
(NRL) 52.

Kwanashie, A. (2015), Efficient algorithms for optimal matching problems under preferences,
PhD thesis, University of Glasgow.

Kwanashie, A., Irving, R., Manlove, D. and Sng, C. (2015), Profile-based optimal matchings in
the student/project allocation problem, in K. Jan, M. Miller and D. Froncek, eds, ‘Combinatorial
Algorithms’, Springer International Publishing, Cham, pp. 213–225.

Lau, L. (2021), ‘Algmatch’, https://liamlau.github.io/individual-project/. Accessed:
2023-03-18.

Lavery, S. (2003), Algorithms for student/project allocation, Bachelor’s thesis, University of
Glasgow.

Lazarov, B. (2018), A web app for visualising matching algorithms, Bachelor’s thesis, University
of Glasgow.

Manlove, D. (2013), Algorithmics of Matching Under Preferences, Vol. 2 of Series on Theoretical
Computer Science, WorldScientific.
URL: https://doi.org/10.1142/8591

Micali, S. and Vazirani, V. V. (1980), An o(v|v| c |e|) algoithm for finding maximum matching in
general graphs, in ‘21st Annual Symposium on Foundations of Computer Science (sfcs 1980)’,
pp. 17–27.

Monte, D. and Tumennasan, N. (2013), ‘Matching with quorums’, Economics Letters 120(1), 14–
17.
URL: https://ideas.repec.org/a/eee/ecolet/v120y2013i1p14-17.html

Morey, R. D. (2021), ‘Student project allocation’, https://richarddmorey.github.io/
studentProjectAllocation/. Accessed: 2023-03-18.

https://visualgo.net/en/matching?slide=1
https://liamlau.github.io/individual-project/
https://richarddmorey.github.io/studentProjectAllocation/
https://richarddmorey.github.io/studentProjectAllocation/

64

Olaosebikan, S. (2020), The Student-Project Allocation Problem: structure and algorithms, PhD
thesis, University of Glasgow.

Olaosebikan, S. and Manlove, D. (2018), ‘Super-stability in the student-project allocation problem
with ties’, Journal of Combinatorial Optimization 43, 1203–1239.

Olaosebikan, S. and Manlove, D. (2019), ‘An algorithm for strong stability in the student-project
allocation problem with ties’.
URL: https://arxiv.org/abs/1911.10262

Oozeer, Y. (2019), ‘Matching algorithm visualiser’, https://
matchingalgorithmvisualiser.github.io/. Accessed: 2023-03-18.

Orlin, J. B. (2013), Max flows in o(nm) time, or better, in ‘Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing’, STOC ’13, Association for Computing
Machinery, New York, NY, USA, p. 765–774.
URL: https://doi.org/10.1145/2488608.2488705

Orlin, J., B, J. and Center, M. (1993), ‘A faster strongly polynomial minimum cost flow algorithm’,
Operations Research 41.

ProjectsGeek (2017), ‘Student project allocation and management project’, https:
//projectsgeek.com/2017/03/student-project-allocation-project.html. Ac-
cessed: 2023-03-18.

Remta, A. (2010), A java api for matching problems, Master’s thesis, University of Glasgow.

Technical University of Munich (2016), ‘Tum matching’, https://algorithms.discrete.
ma.tum.de/matching/. Accessed: 2023-03-18.

University of Glasgow (2023), ‘Matching algorithm toolkit’, https://matwa.
optimalmatching.com/. Accessed: 2023-03-18.

Yang, S. (2022), Maximum cardinality popular matching vs stable matching and maximum
matching, Master’s thesis, University of Glasgow.

Zhang, Y. (2019), Implementation of two allocation algorithms on students and projects, Master’s
thesis, University of Glasgow.

https://matchingalgorithmvisualiser.github.io/
https://matchingalgorithmvisualiser.github.io/
https://projectsgeek.com/2017/03/student-project-allocation-project.html
https://projectsgeek.com/2017/03/student-project-allocation-project.html
https://algorithms.discrete.ma.tum.de/matching/
https://algorithms.discrete.ma.tum.de/matching/
https://matwa.optimalmatching.com/
https://matwa.optimalmatching.com/

	Introduction
	Motivation
	Problem Statement
	Outline

	Background
	Matching Problems
	Student-Project Allocation
	Problem Solvers

	Analysis and Requirements
	Analysis of the Toolkit
	Back-End
	Front-End
	Hosting
	Different Versions
	Gaps in the current System

	Requirements
	User Stories
	Functional Requirements
	Non-Functional Requirements

	Design
	Student-Project Allocation Problem Class
	User Interface
	Abstract Models
	Instance Generator
	One-Sided Solvers
	Two-Sided Solvers
	Readers and Writers

	User Input and General Usability

	Implementation
	Student-Project Allocation Problem Class
	User Interface
	Models and Flows
	Random Instance Generator
	Solvers and Algorithms
	Readers and Writers
	Stability Checker

	General Improvements
	Maximum Popular Matching in Stable Marriage
	User Input and General Usability
	Continuous Integration and Development
	Bugs in the Previous System

	Evaluation
	Functional Testing
	Empirical Evaluation
	User Study

	Conclusion
	Achievements
	Reflection
	Future work

	Appendices
	Appendices
	Application Screenshots
	Setup and Quickstart Instructions
	Folder Structure
	Requirements and Installation
	Setup
	Usage
	Features and Manual
	Testing

	Adding New Algorithms
	General Contribution Guidance
	Test Cases
	Code Contributions
	Core Front-End Changes
	Core Back-End Changes

	SPA Stable Algorithm Pseudo-Code
	User Study Information Sheet
	User Study Task Sheet and Questionnaire
	User Study Ethics Checklist
	User Study Responses

	Bibliography

